CODEN:LUTEDX/(TEIE-5458)/1-62(2021)

Study of an Automated Testing Procedure
with Dynamic Job Scheduling and
Automatic Error Handling

C
0
o+

v

-

O
o+

D
<
O

-

©

@)

C
—

)

)
S

@)

-
LL
©

U
.
o+

U
i
L

Tom Andersson

Industrial

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Study of an automated testing procedure with dynamic job
scheduling and automatic error handling

Tom Andersson
tomandersson94@gmail.com

April 14, 2021

mailto:tomandersson94@gmail.com

Abstract

During the production of Axis’s cameras, the optics modules have to do a number of tests and calibrations
that are performed in different test stations. The test and calibration sequence differs between different
models. This has so far been done manually by having operators move the units between test stations.
However, Axis are planning to automate the procedure by having an industrial robot move test units
between the different test stations. The scope of this thesis is to come up with a concept for the control
of the system, including the flow of information and the job scheduling, and implement a simulation
program where production sequences can be evaluated. The thesis is divided into four parts, specifying
the system requirements, concept generation, scheduling analysis, and implementation of simulations.

The requirements of the system were formulated by discussing the vision of the system with the
project team at Axis. The essential requirements can be summarized as follows. The throughput of the
system and the utilization of the different test stations should be as high as possible. It should be possible
to connect and disconnect test stations during production, without interrupting the rest of the system.
The system should be able to automatically handle unexpected states, such as test units being moved,
having units already within the system upon start up, test stations which break during production etc.
The system should handle potential deadlock situations to keep the production running. And finally,
relevant data concerning tests, test stations and the flow of production should be stored for traceability
reasons and visualized to achieve an overview of the production.

During the concept generation two concepts were generated. One concept was based on the initial
visions of the project team at Axis. The fundamental idea with this concept is that information which
is both generated within the system and is needed further down the test sequence of a specific test
unit is stored on an ID-tag, for example an [RFID}tag, attached to that test unit. This information is
thereafter read when the unit arrives to the different subsystems within the system. The other concept
was generated more freely based on the knowledge and experience of the student carrying out the thesis.
In this concept, the generated information is instead stored in a database and thereafter accessed by the
different subsystems within the system. It was concluded that both concepts offer similar functionalities
but the complexity of the ID-tag concept was lower. However, the project team at Axis was more
experienced in working with databases compared to ID-tags and it was assessed that the lower complexity
of the ID-tag concept was not significant enough to overlook the experience of the team. Therefore, the
database concept was recommended for a future implementation.

To achieve an efficient system, the theories of job shop scheduling are analysed. A framework for
dynamic scheduling was studied to get an overview of how job scheduling problems can be solved. For
instance, the framework described three different categories of dynamic scheduling approaches: heuristic
rules, classical optimization and approaches based on artificial intelligence. Within these categories, a
couple of major techniques were analysed namely 12 standardized heuristic rules for different objectives,
the classical optimization techniques dynamic programming and branch and bound, A*, as well as the
artificial intelligence approaches beam search, genetic algorithms, and tabu search. One technique from
each category was also analysed on a deeper level with focus on the system concerned by this theses.
These techniques were a combined heuristic rule focusing on throughput, A*, and beam search, where
the last technique, beam search, is a combination of heuristic rules and A*.

iii

The implementation of the simulation was based one the database concept. The user specifies the
available test stations, occurrence of breakdowns, buffer size, an incoming rate of test units with a given
test cycle, test units already placed inside the system upon start up, etc. The simulation program will
then run these sequences using the derived combined heuristic rule as well as specified time durations for
tests and the movement of the robot. Once the simulations have completed, the user is presented with
relevant data such as total time, throughput, utilization factors etc. Optimally the simulations should
also include A* and beam search but this was not included in the simulations within the scope of the
thesis.

This thesis provides a foundation for a future implementation of the system. The derived system
concept can be used as a base for a future system design and the simulation software can be used to
evaluate several production capabilities such as, how many test stations of each type that should be used
at a certain production rate.

iv

Preface

Years of studies have come to an end and all the knowledge and experience that have been acquired
throughout the years are now applied in this thesis. I would like to thank everyone at Axis for giving me
this opportunity, for supporting me throughout the thesis, and most of all, for making me feel welcome to
the team at Axis. A special thanks to my supervisors Bjorn Hansson and Martin Nyman, my academic
supervisor Gunnar Lindstedt, and my examiner Ulf Jeppsson for all the valuable guidance you have given
me during this project. Thank you, it would not have been possible without you.

vi

Contents

[Acronyms and abbreviations|

(1__Introductionl

2 System specifications|
2.1 Fundamental functionality|
2.2 Hiciency| o e e
2.3 exibility]
2.4 Error handling]
E5 Deadlocksl . . . o o oo
2.6 Data presentation|.

|3 Concept generation|

3.1 General concept OVerview| oo e e e e e e e e e

3.2 The database concept|

13.2.1 Preparation of the test units| 0.0
822 Arrival and buffer]l oo

3.2.3 esting] . . .

325 Safety]

8.2.7 Exiting the system|o

13.3 The ID-tag concept)| .

3.4 Summary of the communication channels and the essential hardware|

3.5 Comparison of the concepts|

4 Job shop scheduling|
4.1 Scheduling model| . .

4.2 Job shop scheduling theory|

4.2.1 Heuristic rules|

4.2.2 Classical optimization| L

4.2.3 Artificial intelligence approaches| oo oL

4.3 Adapt the theory to the system| oo o

[6_Simulations|

9.2 Configuration|
5.3 The assembly thread|
5.4 'The pretest thread| .
5.5 The arrivals threadl .

ix

23
23
24
25
26
29
30

33
33
34
36
36
36
36
36
37
37
41

vii

[Appendix A: The scheduling algorithm to get the next action|

viii

Acronyms and abbreviations

com. Communication.
DBMS Database Management System.

HMI Human Machine Interface.

I/0 Input/Output.
IR Infrared. [1§

MCU Microcontroller Unit. [I9]

PLC Programmable Logic Controller.
pos. Position.

QR Quick Response.

RFID Radio Frequency Identification.
RW Read-Write.

TOML Tom’s Obvious Minimal Language.

WORM Write Once, Read Many.

ix

Chapter 1

Introduction

Background

Among other products Axis Communications develops, produces and sells network cameras . In the
manufacturing of the optics modules a number of tests and calibrations are performed on each unit.
Which tests and calibrations that are performed and in which order they are performed depends on the
type of objective, image sensor and other components. The size of Axis’s product portfolio combined
with the limited product life cycle makes this a constantly varying procedure. So far the procedure
has been carried out by manually moving the optics modules between different testing and calibration
machines.

Axis plans to automate this process with the use of an industrial robot. The idea is that when an
optics module has been assembled and is ready for testing and calibration, an operator will place it on a
small pallet and connect it to a battery and a microprocessor. The unit is then placed at an input station
from where an industrial robot takes the unit and moves it to the different testing and calibration stations
until the unit is ready and finally placed at an output station. Thereafter, an operator disconnects the
optics module from the pallet. To increase the efficiency, several pallets will be in the system at the same
time. This is visualized in figure

This system will be the core of Axis’s future testing procedure of optics modules. It will therefore be
placed at the different production factories hired by Axis around the world and it will affect most of the
products sold by Axis.

Figure 1.1: An overview of the system. The figure was provided through Axis’s internal material.

Goal

The goal of the thesis is to develop a principle for the control of the system including the flow of
information required for the robot to achieve its tasks. The resulting principle should enable the following:

e A flexible setup where it is possible to locally, at a specific factory, add and take away testing
stations without any need for reprogramming.

e Upon restart after a power failure, the system should automatically determine its state, in terms
of the optics modules within the system, and resume production by redoing test cycles that were
interrupted by the power failure.

e An automatic handling of tests that have become invalid due to a test station being opened by an
operator in the middle of an ongoing test.

e A stable production with a maximized uptime.
e A production where the test stations are being utilized to the maximum.

e Service and replacement of one or several test stations without the other test stations experiencing
any downtime, i.e. the system shall remain running with the capacity of the remaining test stations.

Approach

To achieve the goal, this project is approached in the following way:

e Derive at least two different concepts for the principle for controlling the system and describe the
flow of information in detail.

Specify what subsystems, hardware and software, the different principles require.

Derive the advantages and disadvantages for each of the principles.

Derive at least one technique for handling the necessary job shop scheduling.

Simulate production sequences based on at least one of the principles.

e Recommend one of the principles.

Limitations

The project will not include a physical implementation of the system but rather a theoretical study
and simulations. Deriving how many test stations of each kind that would be sufficient at a certain
production rate and assumed failure rate will not be included within the scope of the project either.

Chapter 2

System specifications

By talking with the employees that are working on the project and the existing testing systems the
following specifications were derived.

2.1 Fundamental functionality

An operator will attach the optics module to a fixing plate and the fixing plate to a pallet holding the
necessary components to drive the optics module. The fixing plate will be product specific but there
will only be one type of pallet. One or potentially several pretests will be performed. If the pretests are
successful, the test unit will be placed at one out of two positions in an arrival station using a conveyor.
If not, the test unit will either be repaired directly or it will be moved to an area for failed test units.

If the pretests were successful, an industrial robot will take the test unit and move it between different
test stations. Within the system, there can be one or several test stations of each type. Different types
of optics modules should go through different testing cycles, i.e. different types of test stations, where
the order can be either specified, irrelevant or partly specified. In some cases, parameters derived during
a test in one test station is needed during a test in a test station further down the test cycle. In some
cases, the test cycle should be aborted after a failed test and in some cases the test cycle should continue
regardless, depending on the type of optics module and in which test station the failure occurred. The
time duration of each test is within a magnitude of seconds or minutes. Each optics module should
undertake around five to ten tests.

Axis’s main database system will provide test definitions that describe the possible test cycles for
each type of optics module. In the test stations, the optics modules are hit with light beams from optical
collimators. An optical collimator is a device that creates parallel beams of light from a point source
[1]. Different types of optics modules should have the collimators placed at different angles. The main
database system will provide the information that tells which angels that should be used for each type
of optics module. The results from each test will be stored in Axis’s main database system.

Several test units will be going through their test cycles simultaneously by having the robot move
one test unit while other test units are being tested. Once a test unit has finished its test cycle or if its
test cycle has been aborted, the robot will move the test unit to an output area. The output area can
either consist of one area for failed units and one for units that have passed their tests or, the output
area can consist of a conveyor that distributes the test units into two different areas depending on if the
tests were successful or not. The pallets and fixing plates will be reintroduced to the system and used
for new arriving optics modules.

2.2 Efficiency

The utilization of the test stations should be maximized and the average waiting time for the test units
should be minimized. It should be possible to set priorities on different types of optics modules and on
specific test units, the later for debugging purposes. The estimated time for a test will be estimated
beforehand but it should also be reevaluated over time to increase the accuracy of the sorting algorithm.
The system will include a buffer area of limited size where test units can be placed in between tests to
increase the efficiency.

2.3 Flexibility

It should be possible to add, take away and replace test stations at any time during production and
having the scheduler replan accordingly. To keep the dedicated workspace of the robot intact when a
test station is moved, the test stations will be structured in a way so that only the interior of the station
is being manipulated while the shells of the test stations are being static, forming the workspace of the
robot. It should also be possible to at any time perform maintenance on test stations through an opening
in the back of the stations while the rest of the system is still active, again having the scheduler replan
accordingly. It should be possible to specify new types of optics modules with new types of fixing plates
and assign test cycles without pausing the production. It should also be possible to specify new types of
test stations that can be included in test cycles without pausing the production. For debugging purposes,
it should be possible to edit the test cycle for a specific test unit. Units that performed a different test
cycle than the standard test cycle for that type of optics module may not be mixed up with modules
that passed their standard test cycles.

2.4 Error handling

To handle unexpected shut downs, for example due to a power failure, the system should when starting
up check if there are any modules already in the system, i.e. at the arrival area, the buffer area, in
the robot’s gripper or in any of the test stations. From that given initial state all unfinished test cycles
from the last time the system was powered up should be redone, i.e. all devices that are inside a test
station that is not their supposed first test need to be taken back to either their first test station or the
buffer area when it is their turn. A module in the robot’s gripper needs to either be taken to its first
test station or to the buffer area. Which alternative that is chosen and in which order these actions are
performed should be derived by the scheduler.

If a test station is opened during a test, the identification of the pallet and fixing point should be
reconfirmed and the whole test cycle should be redone. If the components have been changed or if the
test unit has been taken out of the test station during the time it was open, the scheduler should replan
accordingly. If the test station was opened from the back at the same time as the station is open from
the front, which opens when the robot is about to put in a test unit, the workspace of the robot should
be considered as entered and the robot should stop and not start again until the back opening has been
closed and a start command has been sent manually. If the test station was opened from the back
while the station is not open from the front the test station should be considered unavailable and the
scheduler should replan accordingly. To eliminate the possibility to tamper with test units in the buffer
area unnoticed, this area should be unreachable from outside the robot’s workspace. If the entrance to
the workspace is opened, not only should the robot stop and not start again until the entrance has been
closed and a start command has been sent manually but the test units in the buffer area should also
have their identification reconfirmed and their test cycles redone. If a test unit has been taken away or
moved to a new position in the buffer area after the workspace was entered, the scheduler should replan
accordingly.

The risk of sensor and communication failure should be taken into consideration to avoid costly
failures. If a communication connection is lost, for example due to a broken cable, operators should
be notified and the parts of the system that rely on that communication channel should stop while the
rest of the system stays active, for example if the communication with a specific test station goes down
that test station should be marked as unavailable until the communication is back up. The scheduler
should replan accordingly. When checking for test units at the different positions within the system,
either two redundant sensors or a sensor with integrated redundancy should be used. If these sensors
give conflicting information, the operators should be notified and the parts of the system relying on that
position should be inactivated, for example a test station or a position in the buffer area, until reactivated
by an operator. The scheduler should replan accordingly. During testing, the system should be able to
handle not only failed and passed test but also errors in the test station and errors in the pallet that
are noticed during a test. If it is noticed that a test station is experiencing an error, operators and the
scheduler should be notified and the test unit should be moved to a different test station of the same
type when one is available. If an error in a pallet is noticed, the unit’s test cycle should be aborted and
the operators should be notified. It should be possible for the operators to distinguish between test units
that have failed a test and test units that have experienced an error in its pallet.

2.5 Deadlocks

The system should prevent any avoidable deadlock situations. Deadlock situations that cannot be avoided
are situations that occurs when a test cycle includes a type of test station that is not available or when
the selected size of the buffer is to small to resolve the deadlock.

2.6 Data presentation

For each optics module the test time should be stored and available both locally and remote, since it is
used by the billing system. It should be possible to locally visualize the current queue and the status of
the modules within the system, regarding performed and upcoming tests as well as the estimated time
until the module exits the system.

2.7 Statistics

To enable the possibility to perform a statistical analysis, not only the test results for each type of test
station in the test cycle for each optics module should be stored but also the identification of the specific
test station where the test was performed, the specific pallet and fixing plate used during the test as
well as the time it took to perform the test. Furthermore, it should be possible to link each specific
component used in a test with their respective types. To monitor and analyse the production itself, the
average waiting time for the test units and the utilization for each test station and the robot should
be stored. The mentioned data should be provided to Axis’s main database system for storage and for
performing the statistical analysis.

Chapter 3

Concept generation

3.1 General concept overview

In this chapter, two concepts for the flow of information within the system are described. While both
alternatives were developed by using the system specification, see chapter [2] the first alternative, section
3.2l is to a larger extent purely based on the knowledge and experience of the student while in the
second alternative, section the ideas and visions of the project group at Axis had a bigger impact.
Both concepts were developed iteratively with feedback from the project group. The two concepts are
named the database concept and the ID-tag concept. However, both concepts utilize both databases and
ID-tags. The name describes which technique is more heavily used in the one concept compared to the
other concept. Section describes the database concept completely while describes how the ID-tag
concept differs from the database concept.

Both concepts have the same physical flow of test units, see figure In the assembly area, each
optics module is connected to a fixing plate and a pallet forming a test unit, as described in section [2.1
The test unit is then sent to the pretest area where manual tests, such as connection tests and a visual
inspection, are performed. If the test unit fails a test it will either be fixed in the pretest area or, in the
case of more time consuming cases, it will be sent to the area for units that have not passed their test
cycles. If the test unit passes the pretests it will be sent to the arrivals area from where it can be picked
up by the robot. This area have two separate positions, both reachable by the robot. The robot will
move test units from the arrivals area to the different test stations according to the specified test cycle of
each test unit. In between tests it is possible for the robot to place and store test units in a buffer area
to free up test stations for other test units. If a test unit either fails a test, if an error occurs within the
test unit or if the test unit finishes an unofficial test cycle, i.e. a test cycle that does not fulfill the full
requirements, the robot will move the test unit to the area for test units that have not passed the tests.
If, however, a test unit passes all tests within a test cycle that fulfills the requirements the robot will move
it to the area for passed test units. In the area for test units that have not passed the tests the test units
will be repaired or, in more severe cases, discarded. Thereafter, the optics module will be disconnected
from the pallet and the fixing plate before the three units are sent back to the assembly area, or the
test unit will be sent back to the pretest area while still having the three components connected to each
other. If an emergency stop is activated, if the entrance to the workspace of the robot has been opened
or if the two openings in the test station are open at the same time, a safety [PLC| [Programmable Logid

stops the robot, the conveyor and the test stations.

Not

~ ~ F passed ﬁ
,-ﬁ---_i_"_; R R

EETER < L ' est station]!

Fixing | [Optics [Test, Robot [Test station] :

plate | |module |unit) Buffer [€—»p—— =t !
1

A Y
[Assembly |——{ Pretests |—»| Arrivals

Figure 3.1: The physical flow of test units within the system.

3.2 The database concept

The database concept is visualised in figure [3:2] The messages within the system are described in tables
and It is recommended to follow the figure while reading this section. Each pallet stores an
identification number and the current battery level on an ID-tag. The pallet updates the stored battery
level at a certain frequency. Each fixing plate and optics module stores an identification number and a
shared type number on ID-tags.

3.2.1 Preparation of the test units

In the assembly area, the battery level of the pallet is read to ensure the pallet is fit for use. The
identification numbers of the pallet, fixing plate, and optics module are read, paired together, and saved
to a secondary database, a database used only for this system which is quicker to access than the
main database. The type number is read and sent with a request to the main database which in turn
provides the assembly area with the test definition for the selected type number. The test definition
describes all possible tests that the specified type can undertake, it states whether the tests need to be
performed in a certain order or not, and it provides a standard test cycle to undertake. The operator
at the assembly area decides on a test cycle and the chosen test cycle is sent to the secondary database
along with the identification number of the fixing plate. In case the chosen test cycle consists of a test
that is provided by a test station which is not currently active within the system, the operator will be
presented with a warning. The list of available types of test stations is received from the scheduler.
The secondary database also stores a list of all the types of optics modules and their priority number in
the job scheduling. The operator can then choose to set a different priority for a specific test unit by
having the new priority saved together with the identification number of the fixing plate in the secondary
database.

The assembly area also receives information regarding self tests of the test stations from the scheduler.
The operator first receives a warning and later, if no action has been taken, a final notice that the test
station is unavailable until a self test has been carried out. The message consists of the type of test
station and its position in the system, making it possible for the operator to make an informed decision
of when to carry out the self test, depending on the current production flow. To carry out the self tests
the operator will load a special test unit into the system. This test unit is only used for the self testing
of the test stations. Finally, the assembly area receives a connection check from the main database,
the secondary database and the scheduler. If a connection is lost, the operator at the assembly area is
informed.

The test unit is then sent to the pretest area. Here the battery level of the pallet can be read since
the information can be used while troubleshooting in case a pretest fails.

3.2.2 Arrival and buffer

In the arrivals area and the buffer area, the identification number and type number of the fixing plate are
read. This information is sent to the scheduler together with the position of the test unit, determined
by proximity sensors. If a proximity sensor in one of the areas is experiencing an error, that information
will be shared with the scheduler. Finally, the scheduler will also receive a connection check from both
areas.

When receiving an identification number and type number of a fixing plate from the arrival area, the
scheduler sends these in a request to the secondary database that returns the earlier stored test cycle, the
priority number for that type number and, if applicable, a specific priority number for that identification
number as well as the estimated times in each test station within the test cycle.

3.2.3 Testing

For every test that is performed the scheduler will send the time duration to the secondary database
together with the type number of the fixing plate and the type number of the test station where the
test was carried out. If the estimated time and the actual times differ above a certain threshold the
scheduler will request this list of test times for a given type of fixing plate and test station, recalculate
the estimated time, and then send the new estimation to the secondary database for storage. To enable
the possibility to share the time estimations between sites, the main database can send a request for the
time estimate for a given type of test unit and test station. The main database can also send an updated
time estimation for a given type of test unit and test station to the secondary database. Additionally,
the main database can delete types of test units and test stations from the secondary database when
the models have become deprecated. The secondary database has a connection check from the main
database. If this connection is lost, the secondary database informs the scheduler. Furthermore, the
scheduler has a connection check from the secondary database.

The testing stations have different configuration angles for different types of test units. To be able
to take this into account in the planning, the scheduler requests the configuration angle for each type of
test station and test unit as well as the angular velocity when changing configuration angle in each type
of test station.

When a test station is being connected to the system it sends its type number, position and current
configuration angle to the scheduler. If there already is a test unit in the test station at this point it
will also send the identification number of the fixing plate and the type number of the test unit. The
test stations will also send a request, containing their type number, to the main database to receive
the correct configuration angles for each type of test unit. During the planning phase, the scheduler
sends notices to the test stations telling the type of the next test unit that is planned for the test station,
allowing the test station to configure accordingly. The notice also consists of a variable that tells whether
the test station is the last in the test cycle or not and the identification number of the fixing plate. The
identification number is used here to ensure that the received information concerns the same test unit
as the one later received at the test station. If the test station is the last one in the test cycle it turns
off the pallet after the test has been finished to save battery power.

When a test station receives a test unit it reads the identification numbers of the pallet, fixing plate
and optics module as well as the battery level of the pallet and the type number of the test unit. The
test station sends the identification number of the optics module to the main database as a request to
receive any potential parameters derived in earlier tests. After a test has been carried out the test station
informs the scheduler by sending the type number of the test station, the identification number of the
fixing plate, the basic result, i.e. failed, passed, or error, the battery level of the pallet, and the time
duration of the test. The test station also sends the three identification numbers and the type of the
test unit, the battery level of the pallet, the identification number and position of the test station, the
time duration of the test, any potential parameters needed for tests further down the test cycle, and
the detailed result of the test to the main database for storage. Furthermore, the test stations inform
the scheduler if they are experiencing an error, if the connection between the main database and a test
station is lost, and if the front opening, where the robot enters, or the back opening, used for maintenance
work, has been opened. The test stations also inform the scheduler when they are in need of a self test.
These messages are not only forwarded to the assembly area, as described earlier in this section, but also
to the control panel.

3.2.4 Visualizations and statistics

For visualisation purposes, the control panel receives the current queue within the system, the progress
of the individual test units within the system, the latest reading of the battery level of the pallet for
each test unit within the system and the estimated remaining time for each test unit within the system
from the scheduler. The test units are identified using the identification number of the fixing plate.
Additionally, the scheduler provides the control panel with the average utilization factor of the robots
and the test stations as well as the average waiting time for the different types of test units. To change
the priority number of different types of test units, the operator can request a list of the current priorities
from the secondary database through the control panel. Thereafter the operator can send a new priority
for a specific type of test unit back to the secondary database. To notify the operator regarding errors
through the control panel, the scheduler sends one message to signal a connection error between two
nodes and one message to signal an error within a node, for example a lost connection between a test
station and the scheduler or an internal error in a test station. The control panel also has a connection
check from the scheduler. To disconnect a test station from the system the operator sends a request from
the control panel to the scheduler. The request consists of the position of the test station the operator
want to access. The scheduler will replan accordingly and send a deactivation message to the test station
in question. Thereafter, the scheduler will send a confirmation back to the control panel, saying that
the access has been granted. When the operator wants to activate a test station or any node that has
previously been excluded from the planning due to an error, for example a certain position in the buffer,
the operator sends an activation message through the control panel to the scheduler. The scheduler will
then replan accordingly and, in case the node to be activated is a test station, send an activation message
to that test station.

The scheduler is not only providing the control panel with the average utilization factor of the robots
and the test stations as well as the average waiting time for the different types of test units, but the
information is also sent to the main database for storage. The scheduler also provides the main database
with error logging, logging of emergency stops of the system, and logging of replanning situations due
to test units within the system being moved by operators. As other connections, the scheduler has a
connection check from the main database.

3.2.5 Safety

When an emergency stop has been activated, the entrance to the workspace of the robot has been opened,
or both the front and back opening of a test station has been opened, the Safety [PLC| shuts down the
conveyor, the robot and the test stations as well as informs the scheduler of what triggered the event.
This information is forwarded to the control panel. Once the emergency stop, entrance or opening has
been restored, the operator can start the system from the control panel again. The exact procedure of
how to restore these events, which is needed to comply with safety regulations, are not described within
this thesis.

3.2.6 The robot

To move test units from one position in the system to another, the robot receives commands from the
scheduler. The scheduler will tell the robot to either pick a test unit at a certain position, to place a
test unit at a certain position, or to go to a certain position without picking or placing a test unit. The
scheduler can also command the robot to stop in the middle of one of these actions and the robot will
inform the scheduler if the action is successful. To know the initial state of the robot, the robot informs
the scheduler if it has a test unit in its gripper or not. Furthermore, the scheduler has a connection check
from the robot. To avoid collisions when placing a test unit in the area for passed units or the area for
units that have not passed the tests, these areas send a message to the robot telling whether the placing
area is occupied or not.

10

3.2.7 Exiting the system

When a test unit arrives to the area for passed units or the area for units that have not passed their
tests, the three identification numbers of the test unit are read. In the area of units that have not passed
their tests the identification number of the fixing plate is compared to the corresponding identification
number sent from the scheduler together with the basic result of that test unit. The basic result is
used to distinguish between units that have failed their tests, units that have experienced an error and
units that have completed an unofficial test cycle. Both areas use the identification number of the optics
module in a request to the main database to receive the detailed result. The detailed result is used for
troubleshooting failed test units and for manual verification of the result, a feature often appreciated by
operators. As a final verification, the identification number of the fixing plate is sent to the secondary
database, which returns the three identification number that were paired with it in the assembly area.
These numbers should still be the same. Units that have not passed their tests are either sent back to
the pretest area or the assembly area. Pallets and fixing plates from units that have passed their tests
are sent back to the assembly area. When units are sent back to the assembly area, from either of the
two areas, the pairing of the three identification numbers are deleted from the secondary database. It is
not mandatory to detach the pallet from the fixing plate when sending the units back to the assembly
area.

11

(

_ nu«lﬂolv&vo_._:am.

._nuslnvmlvsuaczﬂ I

.F =
opd

1
=t

i

B

|||||||||

1
n_adiy !

~
1

ajbue”Byuoca — m~adf) — 51 adh ."

_ﬂ— abuep Byuoa — 51 adf
1
1

A

158 awn « 5 adA — n edf)

11 ewn 18] — 5] adf] — m adi]

(Groos == —)
o0 -oun < a7 03" _+\(BuwooTsanbal (5 7do paauucd) apuaps porsuucd) | (1so"oun) : _ Wuu..%._" i 1sa)
g | R siadfy | : | madf -~
awn e Bre — H sod _auwlwlumﬁ,sccow " ni_adfy T " = edy
uonezin) [apws paroauuco) § sous T D ey S SR SR
s > <
- - :
51 ndf) s1_adf) z sod R
p _ si_sod \ sod u
wemjse) jlas) | MOU IS8 IS || aus uoppeuncs
<

51 sod
515 paRauuco

siTsod| |
QU8

ajenjIRap BBNE |-

=1 adiy

lonuon

‘ < s s suoN = m adA}
|Jaued d Aaneq) auop = dj p| s 158
a)seq Ynsal a(Bue” Byuoos e
= = m-adfy
- w.“__u.. .al%%ﬁ_ dp
sl 5] -
; : _

J

Jun” padduf

aphaise — di py
sads opd — dj p

wop|—+ di P d Py

opd + ni_adf B

aseqejep Alepucoag

Je sod| | 18 s
Jaug) | i adky
ﬂ| JJ
- —
q sod

1
q sod

Jowig| [~ ad
wesferedonete] qpsTRd paBULCO

\

nnnnn T SiseRid

wo pl| !

0 aa) ol A
| s misyap v [T Tomneg

™ Ay

moadfy| | [mTedf] | [Aeneq|
wo P dip dpy

i - edk e o Auapeg|
jun|___wo pi | L d pi
! apnpow | | =yeld

isal 8lled

! sopdg | | Buxid

passed

1 [r=vepursai] [wop) AN
’

|||||||||| LA g oy

10N

<€

H
edu”s pajsauuco

—A

STro T !

jun isej 0} mE.-..—H

jun jsaj woy peay T
sbesse|y T

[8UUEYD UORELLIOU| -
Jun 358} Jo Juswanop <

1
[wusep “ s |

Figure 3.2: Flow of information within the database concept. Main power switch not included.

12

Message Description
access_granted A test station can now be manipulated manually.
activate Activate a test station or position in the buffer or arrivals area.
activate_deactivate Activate or deactivate a test station.
activated Signals an activated emergency stop.
avg_wait_time The average waiting time for each type of test unit.
battery_p The battery level of the pallet.
config_angle The configuration angle of a test station.
config_dangle The angular velocity when changing configuration angle.
connected_as_mdb Connection check from the main database to the assembly area.
connected_as_s Connection check from the scheduler to the assembly area.

| connected.as.sdb __ Connection check from the secondary database to the assembly area. |
connected_cp_s Connection check from the scheduler to the control panel.
connected_s_ar Connection check from the arrivals area to the scheduler.
connected_s_b Connection check from the buffer to the scheduler.
connected_s_mdb Connection check from the main database to the scheduler.

connected_s_r Connection check from the robot area to the scheduler.

connected_s_ts Connection check from a test station to the scheduler.

connected_ts_mdb Connection check from the main database to a test station.
connection_error Signals a connection error between two subsystems.

error Signals an error at a test station, in the arrivals area, or in the buffer.
error_logging Logging the errors that have occurred.

got_to Command the robot to go to a specific position.

gripped_unit States whether the robot is holding a test unit or not.

id_fp The identification number of the fixing plate.

id_om The identification number of the optics module.

The identification number of the pallet.

last_ts States whether a test station is the last one in a test cycle or not.
occupied_npa States whether the not passed area is occupied or not.

occupied_pa States whether the passed area is occupied or not.

open States whether the entrance to the robot’s workspace is open or not.
open_back States whether the back of a test station is open or not.

open_front States whether the front of a test station is open or not.

param Parameters derived during a test.

param _list A list of all parameters derived for a specific optics module.

pick Command the robot to pick a test unit at a specific position.

place Command the robot to place a test unit at a specific position.

pos A position in the system.

pos_ar A position in the arrivals area.

pos_b A position in the buffer.

pos_ts A position of a test station.

progress The performed and remaining test for each test unit in the system.
queue The currently planned schedule.

B Only in the database concept
B Ouly in the ID-tag concept

Table 3.1: Description of the messages within the two concepts, part 1.

13

14

Message Description

remaining_time_est The estimation of the remaining time in the system for a test unit.

replan_logging Logging the replanning that have occurred due to unexpected movements of test units.
request_access Request access to manipulate a test station.

request_config Request the configuration angle and angular velocity, for each type of test station and test unit.
result_detail All details concerning a test result for a test unit.

self_test_now Indicates that a self test of a test station should be performed now.

self_test_warm Indicates that a self test of a test station should be performed soon.

start Restart the system after an emergency stop.

stop Commands the robot, the test stations and the conveyor to stop.

stop_logging Logging the emergency stops that have occurred.

stopped States that the system has been stopped due to a safety violation at a certain position.
success States whether the action of the robot was successful or not.

test_cycle The chosen test cycle for a specific test unit.

test_def A definition of the possible test cycles for a specific type of test unit.

test_time The time duration of a test.

test_time_list A list of all test times for a type of test unit and test station.

time_est The estimation of the test time for a type of test unit and test station.

type_ts The type number of a test station.

type_ts_active_list A list of all types of test stations that are currently active.

type_tu The type number of a test unit.

utilization The utilization factors of the robot and the test stations.

B Only in the database concept
B Only in the ID-tag concept

Table 3.2: Description of the messages within the two concepts, part 2.

Message extension Description
— A list of paired up variables.
= None Only included if currently available.

Table 3.3: Description of the message extensions within the two concepts.

3.3 The ID-tag concept

It is recommended to follow figure [3.3] while reading this section. As for the database concept, the
messages within the system are described in tables and The fundamental design of the
ID-tag concept is to a large extent equal to the design of the database concept, see section [3.2] However,
the features that makes the ID-tag concept differ from the database concept are described in this section.
In this concept there is no secondary database. Instead, additional information is stored on the fixing
plate. This additional information consists of the identification numbers of the paired pallet and optics
module, the chosen test cycle, the chosen priority number as well as a list of the basic results.

In the assembly area, the test cycle, priority number and identification number of the paired pallet
and optics module are written to the fixing plate instead of stored in a secondary database. The scheduler
receives the test cycle and priority number directly from the arrivals area, buffer area, or test stations,
the later two in case there is already a test unit in the buffer area or in a test station when the system is
activated. The basic result from each test station is both sent to the scheduler and written to the fixing
plate. Like this, the area for units that have not passed their tests can directly read the basic results
from the test unit instead of receiving it from the scheduler. Similarly, both the area for units that have
passed their tests and the area for the units that have not passed their tests can read the identification
number of the paired pallet and the paired optics module and thereafter delete them instead of contacting
a secondary database. Here, the basic result also has to be deleted from the test unit before the fixing
plate enters the system again.

Since this concept does not include a secondary database the management of time estimations for the
tests in the different types of test stations need to be solved differently in this concept compared to the
database concept. It was chosen to use the main database for this. The scheduler sends a request with
the type of test unit to the main database. The response from the database consists of the estimated
times for each type test station for that type of test unit. In case the actual times differ above a certain
threshold the scheduler will request a list of test times for a given type of test unit and test station,
recalculate the estimated time, and then send the new estimation to the database for storage. Since the
test times are included in the result message from the test stations to the main database, the database
already has access to those.

Additionally, this concept does not include standard priorities for the different types of optics modules
since this feature too was enabled using the secondary database in the database concept. Instead, the
priority that is chosen for the first optics module of each type since startup at the assembly area is used
as a standard value for that type until it is changed or until the system has been shut down.

The rest of the concept design is identical between the two concepts, i.e. the difference is whether to
use a secondary database or to write more information to the test units themselves.

15

s do papx o .‘\u

PR CEL I o
' :

H

1
1
'

a|buep Byuoo «— 51 adfy

A}

gjue” Byuoo « nj adf) — 51 adfy m
v LI

1

19|npayos M

)

~

WU 158} 0) BIIM A
Jun)se} wol peay T

abessay T | || s se pajpsuuca

1ofenuog | . .—E-won_u

|2uuByD uoleuLIoj| -

dojs

fouabiawg

aouenuy _

.

JUN }s8] JO JuaWanroly €

151 angoe” s) adk

\F_ nlwu_ua_um.._:oo_

paned Wo pl

paued d pi
wo pi

152 awn Buiurewsal « dj pi
d~fiapeq « dj pi
ssalboud \.
ananb, 5] s~ papauuca ~
s} sod|
JOUS
ayeaoeap sjeApoe |-
auop = ou
auop = 2pAs js8)
auop = adfy
|||||| auoN = dj p1
bl ajbue Byuoo
51 sod
s
2 : J
/[Goneys s8] €),
! : r : - i
. 1[uonels _moh__.A : : C YYY
T T H H T H
awn Isa) .h £ . _xumn|cmno_ _Eo.___u.._un_o_ E 10q0y
wered - :
(R i A
g} sod

g ﬁ

H H
== -

-

18I 2iseq ynsay
paned wo pi
payed dpi
wo i

dp

d pi

neyep ynsai | wo pi Y

dyp
dp

i uun — — \

1 181 o1I2Bq Jnsad]

i oud]

1 isal aphaisa) 1

" paned wo p "

' m adi) nu.__mnﬂn_l_u_ d Kiapeq

1 wao pi n umb dplr

(" s wes i [einpouw| i !
u_wwnl g__..mw._ 1 12llEd |
paued wo pi 1| sondp 2jerd bura4 1
pauned d pi [t]

"___swuu__swE__Eo-u__ "
R 1

M m mlm --—-ml--

I

2sEqe)Ep

AlA

7

qpuwSE pajoauun feete

_——— == = ===

I
II1IIII+II~._

urepy

: /

Figure 3.3: Flow of information within the ID-tag concept. Main power switch not included.

16

3.4 Summary of the communication channels and the essential
hardware

This section summarizes a high level overview of the necessary communication channels and hardware for
the flow of information within the two concepts. Details such as recommending specific products or brands
are not covered. Instead the focus is on general functionality which leaves the future implementation
open for adjustments to fit in with Axis’s other systems, potential contracts with specific resellers, the
desires of the company to be hired for the system integration and any future changes of the system.
However, the components that are eventually chosen need to comply with the description in this section.
The components that are necessary for the conveyor, for performing the different tests in the test stations
and in the pretest area as well as the tools required for the physical assembly and dismantling is not
included. For a summary in the form of a table, see table for the essential hardware and table [3.5
for the communication channels.

It should be possible to read stored information from the pallets, fixing plates and optics modules. In
the ID-tag concept, it should also be possible to overwrite the information on the fixing plate. Contactless
data transfer would simplify this automatic procedure. For the pallet and fixing plate, [RFID}tags can
be used. To lower the cost of the product, the optics modules can use [QR}codes instead. Additionally,
it should be possible to measure the remaining battery power of the pallet. This can be done by having
the pallet itself update the stored battery power on its [RFID}tag at a certain rate.

In both concepts, the assembly area needs to read for the information stored on the test units. In
the ID-tag concept, writing functionality is also needed. When it comes to communication, the assembly
area needs to have a communication channel to and from the main database and from the scheduler. In
the database concept communication to and from the secondary database is also needed. To visualize
the received data and then manipulate it before it is transmitted, an [FIMI] [Human Machine Interface,
is needed in this area. Next up is the pretest area. In both concepts, this area only needs to read the
remaining battery power of the pallet and present it on an [HMI] If the assembly area and pretest area
is constructed together as one area, they could share the same hardware.

The arrivals area needs a reader for the information stored on the fixing plate. It also needs one
proximity sensor for each position within the area. The data from the proximity sensors needs to be
processed and sent together with information from the fixing plate to the scheduler.

The robot not only needs the hardware and software necessary to run, but also a proximity sensor
in its gripper and a communication channel to and from the scheduler. Furthermore, the robot needs
to receive data from the safety [PLC] the area for passed units and the area for units that did not pass.
These three communication channels can be more simplistic compared to the communication channel
between, for example, the robot and the scheduler, since this information consist of booleans, i.e. each of
these messages can be represented by a signal that is either high or low, rather than more complex data
structures. The area for units that passed and the area for units that did not pass both need to read the
information on the pallet, fixing plate and optics module. In the ID-tag concept, the ability to write new
information to the fixing plate is also needed. Furthermore, the areas need communication to and from
the main database. In the database concept, the area for units that did not pass needs communication
to and from the scheduler and both the areas need communication to and from the secondary database.
Additionally, both areas need a proximity sensor and an[HMI] the latter for visualizing the results of the
test units.

Continuing with the buffer, this area needs a reader for the information on the fixing plate and a
proximity sensor for each position within the area. The data from the proximity sensors needs to be
processed and sent together with information from the fixing plate to the scheduler.

The control panel needs a communication channel to and from the scheduler. In the database concept,
it also needs a communication channel to and from the secondary database. Additionally, as the name
suggests, this area needs an [HMI]] to visualize and manipulate the information.

Moving on to the test stations. The test stations need to read the information from not only the
fixing plate but also the pallet and optics module. In the ID-tag concept, the ability to write information
to the fixing plate is also needed. When it comes to communication channels, the test stations need
channels to and from the main database and the scheduler. Additionally, the test stations communicates
to and from the safety [PLC| however, this communication can be more simplistic since the information
consist of booleans, a signal that is either high or low, rather than more complex data structures.

17

Additionally to the robot and the test stations, the safety [PLC| also needs communication channels
to the scheduler and the conveyor as well as communication channels from the entrance to the robot’s
workspace and from the emergency stops in the system. Here, all communication channels but the
communication channel to the scheduler can be of a more simplistic nature since, again, the information
consists of booleans, a signal that is either high or low, rather than more complex data structures.
The communication channels of the scheduler and the main and secondary database have already been
described. The secondary database is only included in the database concept. This database can either be
completely separated from Axis’s main database management system or integrated within that system.

The communication channels that have been described as more simplistic in this section can be
implemented using communication. In case a signal is lost, a safe state should be assumed. For
proximity sensors, the safe state is to assume that the position is occupied. For safety messages used for
shutting down the system, the safe state is to assume that the system should be shut down. The rest
of the communication channels uses more complex data structures which require a higher bandwidth.
These channels should include a verification of the status of the channel, i.e. if the channel is working
as intended or not. These communication channels could be implemented using for example Ethernet.

As stated in chapter all proximity sensors should include redundancy for increased reliability.
Shawn Frayne [3] describes four common types of proximity sensors: sensors, ultrasonic sensors,
capacitive sensors and inductive sensors. The inductive sensor can only sense metal, it has a short
sensing range, it is suitable for harsh environments and it is in general the cheapest sensor out of these
four. The three other sensors that are mentioned have the advantage that they can also sense other
types of materials. Additionally, ultrasonic sensors and [[R}sensors have a longer sensing range. However,
ultrasonic sensors work best when detecting flat surfaces and [[R}sensors are sensitive to, for example,
dust blocking the beam of light [3]. In this system, all proximity sensors senses whether a test unit is
present or not at a specific location. The shape and material of the test units can be adapted to fit with
the selected type of sensor, for example the test unit can either be made out of metal or have a metal
plate attached to it if this is necessary for the selected type of proximity sensor. The system can also be
designed so that the test units are being placed right by the sensor, meaning that a long sensing range
is not required. The system will be working in an industrial environment but since dust can cause issues
for the optics modules, the cleanliness of the working environment have certain requirements. Taking
all this into account, inductive sensors are recommended. They comply with the requirements of the
system while at the same time, in general, being cheaper than the three other types of sensors that are
discussed.

18

Subsystem Hardware
RFID}tag,
Pallets FIDjreader
CU
Fixing plates
Optics modules QRicode

Assembly

RFID{reader

Pretests

RFID{reader
MCU
HMI

Arrivals

2 |RFID{readers
2 inductive sensors
MCU

E

Buffer

1[RFID{reader per
1 inductive sensor per m

MCUl

Passed

RFID{reader
Rireader
nductive sensor

= —i
2l
= j=

Not passed

Rireader
nductive sensor

CU

s El
=
=l
3
&
o
2

s =
EZ

Robot

Industrial robot
Robot controller
Gripper

Inductive sensor

Test stations

M)
=

FID{readers

reader
MCU

Control panel

Safety IPLCI

Scheduler

Main database

B Only in the database concept
@ Only in the ID-tag concept

Table 3.4: A summary of the essential hardware for each subsystem.

19

Subsystem Ethernet [com.| with Input from Output to [RFID}|QR|read from |:FID|write to
Scheduler Pallet
Assembly Main database Fixing plate
Secondary database Optics module
Pretests
Arrivals Scheduler Fixing plate
Buffer Scheduler Fixing plate
Main database Robot Pallet _
Passed _ Fixing plate
Optics module
Main database Robot Pallet _
Not passed Fixing plate
Scheduler Passed
Robot Not passed
Safety [PLC
Scheduler Safety [PLC Safety Ilﬂl Pallet | Fixing plate |

Test stations

Main database

Fixing plate
Optics module

Control panel

Scheduler

Scheduler Test stations Test stations
Safety Emergency stops Robot
Entrance Conveyor
Assembly
Arrivals
Buffer

Scheduler

Robot
Test stations
Control panel

Safety
Main database

Main database

Assembly
Passed

Not passed
Test stations
Scheduler

B Ouly in the database concept
B Ouly in the ID-tag concept

Table 3.5: A summary of the communication between the different subsystems.

20

3.5 Comparison of the concepts

Both concepts to a large extent offer the same functionality in the form of capabilities, time efficiency
and the available information at each area. The only exception to this is the handling of estimated test
times and standardized priorities.

In the database concept, estimated test times are accessed and updated through the secondary
database while in the ID-tag concept they are accessed and updated through the main database. Due
to this, the process is slower in the ID-tag concept compared to in the database concept. However, the
time estimations for a type of test unit only need to be accessed the first time that type of test unit is
introduced to the system since startup and updates are only performed when the estimated times and
actual times have a difference that is above a certain threshold.

In the database concept, a standard priority value for each type of optics module is stored in the
secondary database and can be changed using the control panel. In the ID-tag concept, the standard
priorities are not stored after the system has been shut down. Instead, the priority that is chosen for the
first optics module of each type since startup at the assembly area is used as a standard value for that
type until it is changed or until the system has been shut down.

What differs more is the implementation. The ID-tag concept uses fewer communication channels
since more information is transferred with the test units. Additionally, the database concept uses a
secondary database that results in a more complex database management system compared to the ID-
tag concept. On the other hand, the ID-tag concept puts a higher demand on the hardware that is used
to store information on the fixing plates since, in this concept, this information is being overwritten
several times during each cycle in the system and, compared to the database concept, more information
is stored.

Another aspect is the potential for future updates and expansions of the system. Here the complexity
of the database concept provides an advantage over the ID-tag concept. Since more areas are connected
in the database concept, more complex features can be added without updating the hardware. However,
it is also an option to include these connections in the ID-tag concept, without utilizing them in the first
version of the system, to enable future usage through software updates.

Taking just this into account, the ID-tag concept would be recommended for a future implementation
since it offers similar capabilities with a system design that is less complex. However, when discussing
the two concepts with the team at Axis, the team conveyed that the structure of the database concept is
more in line with their current expertise than the ID-tag concept. It was estimated that the advantages of
the ID-tag concept are not significant enough to overlook this aspect and therefore the database concept
is recommended for a future implementation.

21

22

Chapter 4

Job shop scheduling

In this chapter, a job shop scheduling method for the system is derived and simulated. First, in section
4.1 a scheduling model for the system is defined, in section theories and methods regarding job
shop scheduling are described and in section the theories are applied on the system concerned in
this thesis.

4.1 Scheduling model

In the system for this project, test units, in regards of scheduling referred to as jobs, j;, arrives to the
arrivals area, an input buffer, By, with the size of two. The jobs will then go through a defined set of
test stations with the help of a robot. In which order a certain job should go should go through the
specified test stations can be either specified, chosen freely or partly specified. Both the robot and the
test stations are here referred to as machines, My being the robot and M; to M,, being the test stations.
The time duration for a job, j;, in a test station, My, i.e. the processing time, can be referred to as
PMy;,- The system also includes a buffer, By, where jobs can be placed by the robot to free up test
stations or the input buffer. In this project, the buffer will have a limited size which can be varied in
between simulations. Once jobs are finished or cancelled, due to errors or failures, they leave the system
through one of the output areas, with the help of the robot. Each of the test stations, M; to M, has a
certain setup time when changing from one type of job to another. This is due to different jobs requiring
different configuration angles in the test stations. The setup can be performed as soon as the previous
job has been processed, i.e. the previous job does not have to leave the machine before the setup can
begin. The setup time between jobs, j; and j;, in a test station, M}, can be referred to as SMy; ;- There
is also a setup time for the robot, the time to get from its current position to the machine or buffer
where a job will be collected. This setup can also be performed beforehand, i.e. before the job is ready
in a machine. The setup time for the robot when going from, for example B; to M}, can be referred
to as sag, ., - For the robot, an equivalent processing time can be defined as, in the cases where the
pick-up position is a machine, the time it takes to enter the machine, the time it takes to collect a
job, deliver it to its next location and, in the cases where the drop-off position is a machine, have the
robot exit the machine. If a job is for example collected as M} and will be placed at B;, the processing
time can be referred to as pas,,, 5,- In addition to the machine and buffers, the robot have three more
positions: the two output areas, referred to as O; and its home position, referred to as H. In the cases
where the robot is starting in another position than the ones described here, the robot will go to the
home position and initialize the scheduling from there. The scheduler should be flexible when it comes
to introduction of more test stations, deactivation of test stations, jobs in unpredicted initial starting
positions and cancellations of jobs. All specified time durations will be approximated, i.e. the true times
may deviate from the approximations. The described model is visualised in figure

In this system, jobs do not have a specified due date, it should however be possible to give different
jobs different priorities. The main objective is to maximize the throughput of the system while no jobs
get stuck in the system waiting.

23

Out

A

Figure 4.1: The scheduling model.

4.2 Job shop scheduling theory

For static scheduling problems consisting of one to two machines and n jobs, for cases with n machines
and two jobs and, under certain conditions, for problems consisting of three machines and n jobs as well
as for a limited number of special cases of more complex systems, general methods have been derived.
However, optimizing the general case of more complex systems are NP-hard [10]. A problem is NP if it
is solvable in nondeterministic polynomial time and if a problem is NP-hard it means that an algorithm
for solving it can be translated into one that solves any other NP-problem [13]. None of the cases that
have a general method derived matches the dynamic model described in section

For dynamic cases like this, with new job arrivals, machine breakdowns and job cancellations, Wang
et al. [12] present a framework for how to handle dynamic job shop scheduling. They divide dynamic
scheduling into four areas: methods, strategies, policies and approaches, see figure

Dynamic No schedule
scheduling
Schedule generation Nominal schedule
Robust schedule
Methods
Right-shift rescheduling
Schedule repair Partial rescheduling
Complete rescheduling
Completely reactive scheduling
Strategies Predictive reactive scheduling
Robust pro-active scheduling
Periodic rescheduling
Policies Event driven rescheduling
Hybrid rescheduling
Heuristic rules
Approaches Classical optimization
Artificial intelligence approaches

Figure 4.2: The scheduling framework presented by Wang et al. |12].

24

The methods are split up into two categories, schedule generation and schedule repair. For schedule
generation three methods are mentioned, no schedule, nominal schedule and robust schedule. With a
nominal schedule, the initial schedule is created without real time events, such as job cancellation, taken
into account. With a robust schedule, the initial schedule builds upon predictions of upcoming real time
events. In the final case, no schedule, no initial schedule is generated. Instead commands are chosen
in real time. Wang et al. also name three alternatives when it comes to schedule repair, right-shift
rescheduling, complete rescheduling and partial rescheduling. In right-shift rescheduling, the content of
the schedule is pushed forward in time to allow for unexpected time delays. In complete rescheduling, the
whole schedule is reevaluated once a real time events affect the schedule. Finally, in partial rescheduling,
only the operations that are affected by a real time event are reevaluated [12].

Wang et al. describe three different strategies. Completely reactive scheduling, predictive reactive
scheduling and robust pro-active scheduling. In completely reactive scheduling the scheduling is per-
formed in real time without predictions. In predictive reactive scheduling, a schedule is generated by
predicting the outcome of a system. The schedule is then adapted according to real time events. In ro-
bust pro-active scheduling, the effect of system disturbances and performances are predicted beforehand
to generate a schedule in advance [12].

Furthermore, Wang et al. present three policies for implementing the strategies: periodic reschedul-
ing, event-driven rescheduling and hybrid rescheduling. All three policies take real time events into
account, however, periodic rescheduling takes events into account only at a specific rate, event-driven
rescheduling handles the events as they occur and in hybrid rescheduling the rescheduling is done peri-
odically but it is only carried out in case a real time event has occurred [12].

Finally, Wang et al. bring up three approaches, heuristic rules, classical optimization and artificial
intelligence approaches [12]. These require a more substantial review and are therefore described in more
detail in the upcoming subsections, namely subsection [£.2.1] [{.2.2] and [£.2.3]

4.2.1 Heuristic rules

Heuristic rules, also known as dispatching rules, are prioritization rules based on attributes of jobs,
machines and time. In each step when choosing a job to process, the job with the highest resulting
priority according to the rule is chosen. Depending on which factors the objective is related to, factors
such as maximum lateness, variation in waiting time, workload balancing, throughput and so on, different
rules tend to be more effective. However, no guarantees are given. [5]

Michael L. Pinedo [5] describes 12 standardized heuristic rules and for which objectives they tend to
be the most effective.

e The earliest release date first rule, the job that arrived to the system first is chosen first, tends to
minimize the variation in the waiting time.

e The earliest due date rule, the job with the earliest due date is chosen first, and the minimum slack
rule, the job with the smallest difference between the time until the due date and the processing
time is chosen first, tend to minimize the maximum lateness.

e The longest processing time first rule where, as the name suggests, the job with the longest process-
ing time is chosen first, tend to balance the workload over the different machines to the maximum
in cases were machines work in parallel.

e The shortest processing time first rule tends to minimize the sum of the completion times of the
jobs.

e By modifying the shortest processing time first rule by introducing weights to the different jobs, the
weighted shorted processing time first rule tends to minimize the weighted sum of the completion
times.

e When the queue behind each available job is known, the critical path rule, where the job that is
in first place of the queue with the highest sum of processing times is chosen first, and the largest
number of successors rule, the job that has the highest number of jobs in queue behind it is chosen
first, tend to minimize the makespan of the jobs, i.e. the time duration that each job spends within
the system.

25

e The shortest setup time first rule, the job that requires the shortest setup time is chosen, and the
least flexible job first rule, where the job that has the lowest number of alternative machines to
chose from is chosen first, tend to minimize the makespan of the jobs and maximize throughput of
the system.

e The shortest queue at the next operation rule, the job that has the shortest queue in between leaving
the upcoming machine and entering the next one is chosen first, tends to minimize the machine
idleness.

e Finally, the service in random order rule, where jobs are chosen at random, is the solution that
tends to minimize the complexity of the implementation.

However, in practise the sought objective could be a time dependent combination of several factors.
Pinedo [5] explains that several heuristic rules can be combined into more complex rules by applying
scaling functions to a combination of the standardized heuristic rules. These rules have to be determined
by the developer to fit the needs of the specific system. Experience is helpful when designing the rules
but simulations are needed to fully validate them |[5].

4.2.2 Classical optimization

When solving the scheduling problem by using classical optimization, dynamic programming and branch
and bound methods are the most commonly used techniques [6].

Michael L. Pinedo [6] explains that the idea behind dynamic programming is to divide the problem
into subproblems and calculate the optimal solution for each subproblem. When there are more than
one way of dividing the problem, each possible way is explored. The solutions are then combined to
form the main problem and an optimal solution for the main problem is calculated. Pinedo concretizes
dynamic programming for the case of dynamic job shop scheduling. Each job is given a cost. The
cost depends on the time when the job is finished and can include different scaling factors for different
jobs. The sum of the costs for all jobs forms the full objective that should be minimized to achieve the
optimal solution. The jobs that are available for processing are split into subgroups, each with a fixed
number of jobs. When the total number of jobs is a prime number, one single group can consist of fewer
jobs than the others. Dynamic programming has two different approaches, forward and backward. In
forward dynamic programming, one subgroup is chosen as the first one to process. By iterating through
all different combinations, the optimal order for the first subgroup, when it is processed first, is found.
Then, another subgroup is chosen as the second subgroup to be processed and the optimal order for that
subgroup, when processed as the second subgroup, is found in the same way as for the first subgroup.
This goes on until an optimal order has been derived within each subgroup, given a set processing order
of the subgroups. If one subgroup has fewer jobs than the other, this subgroup should be processed
last. This process is repeated for every possible order of the subgroups. As a final step, this process
is repeated for every possible formation of subgroups of the previously chosen fixed size. Once this has
been done, the solution with the lowest total cost is the optimal processing order. Backward dynamic
programming works similarly to forward dynamic programming. The only difference is that instead of
first choosing the first subgroup to be processed and work from there, the last subgroup to be processed
is chosen first and the method continues by working towards the first subgroup to be processed. If n
jobs shall be processed in one machine, it can be shown that the total number of evaluations needed to
solve the problem with this method are O(2™) [6]. A visualization of forward dynamic programming for
job scheduling is shown in figure [£.3]

26

Processing order

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4

Split into subgroups. IJ1 J2 J3 J4 J5 JG |‘J7 ‘J8 Jg EJ10 J11:

!

Find the optimal order in each

subgroup by iterating over all :J2 J3 J1 E :J4 J6 J5E :Jg J8 J7E :J10 J11:

alternatives. fmmmmmmm - fmmmmmmm e fmmmmmmm - EEEEEE '
iT Repeat for all possible

formations of subgrowps { e e .

Split into new subgroups 'J4 J8 J1O .J»] J6 J7 uz J3 J8: EJ5 J11 :

Figure 4.3: A visualization of forward dynamic programming for job scheduling.

Patrick Winston, instructor at MIT, explains the branch and bound method by applying it to an
example where the shortest path between two nodes in a map is sought |[14]. The paths between the
nodes in the map each have a positive, nonzero, cost assigned to them. A search tree is built with the
starting node as the root. Each possible path leading to new nodes from the root are explored, forming
branches in the search tree. Once all paths that are leading out of the root have been explored, the
algorithm steps down one layer in the tree and starts exploring all paths leading out of the second layer
of nodes, starting with the node that has the lowest cumulative sum of costs in its path from the root.
One node at a time, the algorithm continues to explore paths leading out of the nodes, always starting
with the node with the least cumulative sum of costs, until the end node has been reached and no node
with unexplored paths and a shorter cumulative sum of costs than the full way to the goal exists. By
adding what is called an extended list to the branch and bound method, the algorithm keeps track of
which nodes it has reached previously and what the lowest cumulative sum of costs from the root to each
node is. If the algorithm comes back to a node it has already visited through another branch, only the
branch with the lowest cumulative sum of costs will be expanded further [14]. The method is visualized
with an example in figure

27

All branches leading out of the root are explored.

>>

2B 3C

B has the lowest cumulative sum of cost.

Therefore, the branches leading out of B are

>>

explored. The found C has a higher cumulative

N
oy}
@)

3

sum of costs than the previously found branch

\

leading to C.

Now C has the lowest cumulative sum of cost.

Therefore, the branches leading out of C are

>

explored. The found B has a higher cumulative

N
Y]
w
@)

sum of costs than the previously found branch

\
\

leading to B.

P
X
o
)
o
&
o
m

Now D has the lowest cumulative sum of cost.

Therefore, the branches leading out of D are

>>

explored. The goal, F, is found and no other

N
o
w
O

branch have a lower cumulative sum of cost.

5 K 8 K Therefore, the optimal path has been found.

g

TE 7F

\

o
)

Figure 4.4: A visualization of the branch and bound method with an extended list. The optimal path
from A to F in the map to the left in the figure is sought.

Furthermore, Winston [14] describes that in cases where the remaining distance from a node to the
goal can be given a lower bound before the branches leading out from that node have been explored, the
algorithm can be improved further. Instead of extending the node with the lowest cumulative sum of
costs next, the node where the sum of the cumulative sum of costs and the lower bound of the remaining
distance is the lowest, is extended first. When the goal node has been reached and, by taking the lower
bound of the remaining distance into account, no other branch can reach the goal at a lower cost, the
optimal path has been found [14].

The branch and bound method used together with an extended list and with utilization of lower
bounds on the remaining distance from each node forms a method known as A*, pronounced A-star.
Russell and Norvig [11] state that the time complexity of A* depends on the accuracy of the set lower
bound, i.e. how close the lower bound is to the actual cost. However, for most heuristics in practical
use, the time complexity is exponential in the solution depth of the search tree. The main drawback of
A* is however not the time complexity, but rather the space complexity since all generated nodes are
stored in memory [11].

The explanation of branch and bound and A* given by Winston is based on finding the optimal route
between two nodes in a map [14]. For the purpose of this thesis, the problem needs to be reformulated
to fit with job scheduling, a problem that has different characteristics depending on the application.
For some special cases, the adaptation of the algorithm has received considerable attention in previous
studies. One example of such special cases is the case with one machine and several jobs that each have
a release date and a due date. The adaptations of the algorithm for this problem has been described by
Pinedo [7].

28

4.2.3 Artificial intelligence approaches

The artificial intelligence techniques that are typical for solving the job scheduling problem are often
meta heuristic approaches, such as the genetic algorithm, tabu search, beam search, multi-agent systems,
neural networks, ant colony optimization, artificial bee colony algorithm and variable neighbourhood
search [12]. To limit the scope of this analysis, only beam search, genetic algorithms and tabu search are
covered here.

According to Pinedo, the beam search method combines the branch and bound method with heuristic
rules, see subsections and to eliminate the amount of branches that are being extended [8].
At each level in the search tree, the nodes are evaluated and only the most promising nodes are extended
further. As a compromise between spending time on extending more nodes and spending time on
performing a more complex evaluation of the nodes, the evaluation process can be split up in two stages.
First, a quicker evaluation is performed on all nodes at the current level. The nodes that perform the
best in this evaluation move on to the next stage. The amount of nodes that moves on to the next
stage is referred to as the filter width. In the second stage, a more time consuming evaluation method
is performed on the remaining nodes and only the nodes with the best results are extended to the next
level in the search tree. The amount of nodes that is further extended is refereed to as the beam width.
The evaluation process consists of heuristic rules or a composition of several heuristic rules. This method
decreases the computing time of the branch and bound method but there is no longer a guarantee that
the found solution is optimal [§].

Genetic algorithms are also explained by Pinedo [8]. This algorithm uses some heuristic rules, see
subsection to create several schedules. The generated schedules are ranked according to a selected
objective, for example the throughput of the system or the average waiting times of the jobs etc. The
two schedules that performs the worst are disregarded and two new schedules are constructed by in a
predefined way combining features from the two schedules that performed the best. The newly created
schedules are considered neighbors to the schedules they originated from. In the example of parallel
machines simultaneously processing a sequence of jobs each an example of a feature to combine is the
sequences in different machines. The remaining schedules, that is all schedules but the two that performed
the worst, are kept the same and the ranking process starts again. This process continues for a predefined
number of iterations before the best performing schedule is chosen. Just as for the beam search method,
this method does not guarantee an optimal result [§].

Tabu search is also described by Pinedo [8]. Tabu search can be seen as a special case of genetic
algorithms. The algorithm is described in the following way. An initial schedule is generated using
some heuristic rules. New schedules from the neighbourhood of the initial schedule are generated. If
the system consists of several jobs that should be processed in a single machine, the neighbourhood can
be defined as the schedules that can be generated by switching place on two adjacent jobs. Out of the
newly generated schedules, the best performing schedule according to a selected objective function is
kept and the change from the initial schedule to the chosen schedule, defined by for example the two
jobs that switched place in the previously mentioned example, is kept in a so called tabu list. If the
generated schedule performs better than the initial schedule, according to the same objective function,
the new schedule is also stored as the best schedule so far. The algorithm performs another iteration
by generating new schedules out of the neighbourhood of the previously generated schedule, regardless
if the schedule was better than the last one or not. However, after the initial iteration the tabu list
comes into place. At each iteration, changes that are already in the tabu list may not be performed
again, meaning that schedules generated through such changes should not be considered when picking
the best performing schedule within the neighbourhood. At each iteration the chosen change is added
to the tabu list. However, the tabu list has a limited size so at each iteration the oldest element in the
list will be deleted and it will once again be considered as a valid option. The tabu list is used so that
the algorithm does not come back to the same local minimum over and over again. When the algorithm
has gone through a set number of iterations or when a better performing schedule has not been found
for a certain number of iterations, the algorithm is finished and the schedule that performed the best is
applied. In more complex setups compared to the mentioned example, defining the neighbourhood of a
schedule is a considerable challenge when applying the algorithm. As for the beam search method and
genetic algorithms in general, this method does not guarantee an optimal result. There are also more
complex versions of tabu search, for example one method that uses a so called tabu tree. Instead of just
saving the tabu list and the best solution so far, nodes are generated in a tree structure, each level in
the tree being the neighbourhood of the layer above. In this way, nodes that did not seem promising at
first can be revisited if the result from expanding an initially more promising node turns out to be less
effective than what was anticipated at first [8].

29

4.3 Adapt the theory to the system

In this section, the framework presented in section is applied on the system represented by the model
in section and the demands on flexibility in the scheduling according to the system specifications in
chapter [2

Firstly, a method is decided. To maximize the efficiency of the system, a job schedule should optimally
be used. The real time events affecting the system, such as deactivated and activated machines, jobs that
failed a test, etc. are considered as both common and unpredictable. Therefore, the schedule generation
should consist of a nominal schedule. Since a single machine, the robot, is in the central of the system
in a way that all jobs have to go through this machine when moving to another, a real time event in one
part of the system will affect the entire system. The real time events also impose new system restrictions
and goals, for example more available machines or a job being cancelled, meaning the real time events
cannot be taken care of by right-shifting the schedule. In conclusion, the schedule repair should be based
on complete rescheduling.

Secondly, a strategy is decided. As previously stated, some real time events cannot be predicted,
however, there are also some predictions that can be made, namely predicting or estimating the processing
times within the system. Taking this into account, the most appropriate strategy is to use predictive
reactive scheduling.

Thirdly, a policy is decided. The real time events affecting the system, as previously stated, change
the direct restrictions and goals of the system. These events need to be considered as soon as they occur.
Therefore, event driven rescheduling should be used.

Finally, the alternative approaches that were studied in subsection [4.2.1 |4.2.2[and [4.2.3] To limit
the scope of the project, it was chosen to focus on heuristic rules, the branch and bound method, A*
and beam search in the implementation. These methods represent all three approach categories and
furthermore, the branch and bound method and A* have potential to be less time consuming than
dynamic programming and beam search builds on a combination of branch and bound, or A* and
heuristic rules which lower the development time compared to if genetic algorithms or tabu search were
to be implemented instead.

Firstly, the method of using heuristic rules is adapted. This method does not generate a schedule,
instead the actions are decided in real time. As stated in section the jobs have no defined due date
and the system does not know about jobs that have not yet arrived to the system. Furthermore, it should
be possible to set different priorities for different jobs. The main objective is to maximize the throughput
while no jobs get stuck in the system. As stated in subsection the shortest setup time first rule and
the least flexible job first rule tend to maximize the throughput of the system while the earliest release
date first rule tends to minimize the variation in waiting time. In this case, there is a considerable chance
that the jobs within the system have an equal amount of flexibility due to the possibility of adding more
machines to the system to adapt according to the flow of production. A combination of the shortest
setup time first rule, the earliest release date first rule and prioritization weights therefore have potential
to be effective in this case. However, as stated in subsection 4.2.1] no guarantees for an optimal solution
can be given. It is not a goal to minimize the variation in waiting time but the variation should be
limited to a certain level.

30

The combined heuristic rules should give a higher priority for jobs with a lower setup time and it
should be possible to assign jobs with prioritization weights. The structure of the system, see figure
shows that each move consists of going through Mj to the next location, which can be another machine.
Therefore, the setup time to consider is the setup time of My plus any remaining setup time for the
upcoming machine in case the setup has not finished once the job arrives at the machine. The process-
ing time for the test stations only depend on the jobs and can therefore not be altered. However, the
processing time for the robot, My, depends on the chosen schedule. Therefore, a lower processing time
in My should increase the priority. To give priority to jobs that have been in the system substantially
longer than other jobs, the priority should increase exponentially with increased waiting time, i.e. as the
release date gets older. The suggested prioritization function for each job is shown in equation and
visualized in figure [L.5] The structure of this equation was inspired by the apparent tardiness heuristic,
which is a combination of the weighted shortest processing time first rule and the minimum slack first
rule, suggested by Pinedo as a solution for a system with one machine and several jobs [5].

W
Lt)=—~ e“"‘(t*”), t>r; 4.1
)= s (11)

w; = Prioritization weight, job j
p; = Processing time, job j
s; = Setup time, job j
r; = Release date, job j
a, = Scaling parameter, processing time
as = Scaling parameter, setup time

a, = Scaling parameter, release date

t =Time
- — wj ar(t—rj)

I;(t) appi+ass; ;o b=y
—
=
-

w;
appjtass; |
Ty
t

Figure 4.5: The combined heuristic rules as a function of time.

31

Secondly, the theory of the branch and bound method and A* is adapted. In job scheduling, the
goal is not to find an optimal route between two nodes, but to find an optimal sequence for processing
all of the jobs. The nodes, in subsection [£.2.2] formulated as positions in the map, can be reformulated
into a representation of the system that describes which jobs have been processed in which machines and
where in the system the jobs are currently located. The cost of each action, previously formulated as
a distance between nodes, can be formulated as the sum of the remaining processing time for a certain
job in a certain machine and the proportion of the setup time that can not be finished before the job
is ready to enter the machine. The processing times of each test station only depend on what type of
job that is being processed. The processing time of the robot depends on the position of the job and
the position of the next test station for that job. The setup time of the robot depends on the current
position of the robot and the position of the job it should pick up. The setup time of the test station not
only depends on the job that is going to be processed, but also the previously processed job. Since the
test cycle defines which type of test stations each job should go through and the setup times for the test
stations and the robot as well as the processing time of the robot depends on the generated schedule,
the processing times of the remaining test stations for a job plus a lower bound of the processing times
in the robot can be used as a lower bound until a job is finished. Since jobs can be processed in parallel,
the job with the highest lower bound gives the lower bound for finishing all jobs within the system.

This technique would find an optimal solution for processing all jobs the quickest. However, prioriti-
zation on different jobs are not taken into account. To take this into account, the representation of the
cost would have to be reformulated to a function dependent on not only time but also the prioritization
number of the involved jobs.

Finally, combining the branch and bound method or A* with the derived heuristic rule form the beam
search method. Taking the time complexity of evaluating the heuristic rule and the limited amount of
nodes at each level into account, it was chosen not to split up the filtering into two stages. The beam
width should be variable in the simulations.

32

Chapter 5

Simulations

Before the implementation of the simulation program could start, the purpose of it had to be established.
It was discussed whether the focus should be on fully mimicking the database concept to get a complete
proof of concept where the user can observe and manipulate the system in the middle of a running
simulation or if the focus should be on simulating larger production sequences where utilization factors
and production times can be simulated in a predefined system setup. Out of these two alternatives,
the latter was more in line with the needs of the company. Axis requested that the simulation program
should be written in C#. The student did not have previous experiences from C# so the workflow
started of with an introduction to the language, focusing on general syntax, multi-threading and user
interfaces. This chapter describes the structure and capabilities of the program. Due to the size of the
program, over 3900 lines of code with relatively long algorithms, the complete code will not be presented
in this report. Instead, the focus will be on describing the structure and algorithms in text with the help
of shorter code snippets.

5.1 General structure

Each of the different subsystems visualized in figure [3.1] plus the scheduler and secondary database,
visualized in figure were implemented as separate threads. A class that represents jobs were created
and to simulate jobs moving within the system, objects of the job class are sent between the different
threads using channels were each channel has a reader and a writer. For example, the assembly thread
has a channel writer that sends job to the channel reader in the pretest thread. When the movement is
initialized from the receiving thread, i.e. when a job should be picked by the robot, the robot thread sends
a request to a subsystem which in turn sends a job as response. For example, the robot sends requests
containing a position index to the test stations thread using one channel. The test stations thread then
sends the job currently located in that position to the robot thread through another channel.

The communication between the threads was implemented in the same way as the movement of jobs,
i.e. by sending the information in channels. To synchronize the timing between the different threads,
the scheduler sends out updated time stamps to each time dependent thread throughout the course of
the simulation.

33

5.2 Configuration

When starting the simulation, the user is presented with a graphical user interface made with windows
forms [4]. The user is requested to select a configuration file for the simulation. The simulation uses
configuration files written in the file format [TOML] [Tom’s Obvious Minimal Language] [9] and an
example of a configuration file can be found in listing [5.1

As seen in listing the user can specify a failure rate of the pretests, that will be sent from the
main thread to the pretest thread, and breakdown times for the 2 positions in the arrivals area, which
will be sent to the arrivals thread. In this example the breakdown times are set to -1 and 3000, this
represents that the first position will not break but the second position will break 3000 seconds into the
simulation.

Continuing reading the file, the user can select the parameters for the heuristic rule from equation
[E1 which will be sent to the scheduler thread.

Furthermore, the user defines the jobs that are going to be sent from the assembly area during the
simulation. Each defined job configuration represents an incoming rate of a certain type of jobs with a
specified test cycle and prioritization value. In this example 50 jobs of type 1 with prioritization 3 will
be sent with 180 seconds between each job starting at time 0. The test cycle consists of test stations of
type 1, 2 and 3 where type 1 should go first but the order between type 2 and 3 does not matter.

Further down in the example, the buffer is configured. The size of the buffer is decided and, similarly
to the arrivals area, a breakdown time can be set for each position in the buffer. Each position in the
buffer can also be given an initial job, a job that is located in that buffer position when the simulations
start. The buffer configuration is not only sent to the buffer thread, the scheduler will also receive the
size of the buffer and the main thread will, during the configuration, send the prioritization value and
test cycle of any jobs initially located in the buffer to the database thread for storage.

Finally, the example shows how test stations are configured. Test stations of specified types are
entered one after another in an order that corresponds to the position they are located at. Similarly to
the buffer and arrivals area, each test station has a breakdown time but also a connect time, representing
when the test station is connected to the system and, from there on, available for usage. Furthermore,
each test station is given an initial job configuration and, potentially, a job that is located within the
test station when it is connected to the system.

34

PretestFailureRate = 0.03

ArrivalsBreakdownTimes = [-1.0, 3000.0]

[SchedulingConfig]
HeuristicRuleProcessTimeScaling = 1.0
HeuristicRuleSetupTimeScaling = 1.0
HeuristicRuleReleaseDateScaling = 0.05

[[AssemblyJobConfigs]]

JobType = 1

TestCycleTypes = [1, 2, 3]
TestCycleOrderSpecification = [true, false, false]
NbrO0fJobs = 50

FirstSendTime = 0.0

TimeBetweenSends = 180.0

Prio = 3

[[BufferConfigs]]

BreakdownTime = -1.0
[BufferConfigs.InitialJob]

JobType = 2

TestCycleTypes = [1, 3]
TestCycleOrderSpecification = [true, truel
Prio = 2

[[BufferConfigs]]
BreakdownTime = 3000.0
[BufferConfigs.InitialJob]

[[TestStationConfigs]]

Type = 1

ConnectTime = 0.0
BreakdownTime = 2500.0
TestFailureRate = 0.01

InitialJobTypeConfig = 1
[TestStationConfigs.InitialJob]

[[TestStationConfigs]]
Type = 2
ConnectTime = 0.0
BreakdownTime = -1.0

TestFailureRate = 0.01

InitialJobTypeConfig = 1
[TestStationConfigs.InitialJob]

JobType = 3

TestCycleTypes = [1, 3, 2]
TestCycleOrderSpecification = [false, false, true]
Prio = 2

[[TestStationConfigs]]
Type = 3
ConnectTime = 0.0
BreakdownTime = -1.0
TestFailureRate = 0.01
InitialJobTypeConfig = 1
[TestStationConfigs.InitialJob]

[[TestStationConfigs]]

Type =1
ConnectTime = 3000.0
BreakdownTime = -1

TestFailureRate = 0.01
InitialJobTypeConfig = 2
[TestStationConfigs.InitialJob]

Listing 5.1: An example of a configuration file.

35

5.3 The assembly thread

The assembly thread receives the job configuration and sends the time when the first jobs are going to be
sent from the assembly area together with the amount of jobs that are sent at that time to the scheduler
thread. Thereafter, the assembly area waits for an update of the time stamp from the scheduler. When
the time stamp matches the time when the next job is going to be sent, the assembly area gives that
job an identification number, sends the prioritization value and test cycle to the database thread and
thereafter sends the job to the pretest area. After this is done, the assembly area will also send the time
when the next jobs are sent together with the number of jobs sent at that time to the scheduler. The
scheduler needs this information to know how the time stamp should be updated.

5.4 The pretest thread

Every time a job is received to the pretest thread, the pretest thread will perform a simulated test where
the chance of passing is in accordance with the failure rate configuration. The job will only be sent
forward to the arrivals area if it passes the pretest. Otherwise, the job is discarded. The time of a
pretest is set to 0, meaning that the job is sent forward at the same time stamp as it arrived to the area.
The pretest thread will also send a notification to the scheduler, telling whether each carried out pretest
is passed or not. This information tells the scheduler whether it should expect an arriving job or not.

5.5 The arrivals thread

When the arrivals thread receives its configuration, the potential times of breakdowns are sent to the
scheduler to be used when determining the update of the time stamp. The arrivals thread receives the
jobs from the pretest thread and notifies the scheduler of the arrival. This notification consists of the
position of the job, its type number and its position in the arrivals area. If there are more than two jobs
in the arrivals area, jobs will be placed in a queue and the notification for that job will not be sent until
the job has reached one of the two positions that are reachable by the robot. If a position in the arrivals
area is set to experience a breakdown, the thread will notify the scheduler about the breakdown at the
time it occurs. Jobs will still arrive to the area but the scheduler will not be notified about these jobs,
meaning that if a job arrives to that position, it will be stuck there throughout the rest of the simulation,
which will be accounted for by the scheduler.

5.6 The robot thread

The robot thread receives commands from the scheduler. The commands tell the robot to pick a job from
a certain position or to place a job at a certain position. When the action is completed, the robot will
notify the scheduler. The robot itself does not handle any time durations for the movements, however
the scheduler uses a function for calculating the time durations for each action of the robot.

5.7 The buffer thread

When the buffer has received its configuration, it will notify the scheduler of any initial jobs in the buffer
and off any upcoming breakdown times. Similarly to the arrivals thread, the buffer thread will also
notify the scheduler when a predefined breakdown occurs at a specific position within the buffer, any
jobs currently located at that position will be discarded. Whenever the buffer receives a job from the
robot, it will notify the scheduler as a confirmation that the correct job has arrived. This is, however,
not utilized in the scheduler but in a future update it could be used as another way of inserting simulated
errors in the system.

36

5.8 The test stations thread

A single thread handles all the test stations. When this thread receives its configuration, the connect
times and breakdown times are forwarded to the scheduler. The test times for each job type in each
test station are stored in the database. When the test stations thread receives its configuration, it will
also request the test times for all types of test stations included in the configuration from the database
thread. When a test station is connected, the scheduler will be informed of the type of the test station,
the position, the configuration and the id and type of any initial job in the test station. Similarly to
the buffer and arrivals thread, the scheduler will also be notified when a test station is experiencing a
predefined error. Before each test, the test stations thread receives information on the upcoming test
from the scheduler, the test station in question will then prepare by changing the configuration to match
the upcoming job type. When the job is received, the test stations thread will calculate when the test
should be finished. When the time stamp matches this time, the test stations thread notifies the scheduler
with a test result that is randomized according to the configured failure rate.

5.9 The scheduler thread

A simplified pseudo code version of the main loop of the scheduler is shown in listing This loop is
entered once the scheduler has received a complete configuration. First, the initial jobs must become
available. The scheduler will check when the first event occurs, i.e. arriving jobs, connected test stations,
or breakdowns, etc. The time stamp is then updated accordingly. Then the scheduler will check if there
will occur any breakdowns at this time stamp. If so, the scheduler will wait for a breakdown notification.
Next up, the scheduler will check for arriving jobs, connected test stations and any initial jobs in a test
station or in the buffer. For any arriving jobs, the scheduler will request the prioritization value and test
cycle from the database. If a new job type arrives for the first time, the scheduler will also request the
test times for that type of job from the database. All this is done in line 1-6 in listing [5.2] It is enclosed
in a while loop since pretest failures and breakdowns can stop expected jobs from becoming available.

Then the main while loop is entered and will not be exited until the scheduling is done or has failed
due to a deadlock. The scheduler will first use the information of all available jobs and determine the
best action to take using the heuristic rule defined by equation This function will be explained
in more detail later in this section. If no action is available, either a deadlock has been achieved or,
more commonly, the scheduler needs to wait for tests to finish. Therefore, if no action is available, the
scheduler will perform the steps from line 3-5 again. What was not mentioned before, since it is not
relevant until the first test has started, is that when checking for available jobs, test results are also
received. If, however, an action is available the scheduler will command the robot to perform this action.

If the end position is a test station the scheduler will start by sending the information of the job to
the receiving test station. Then the scheduler will send the pick and place commands to the robot while
also updating the time stamp with the time duration of the action. During this procedure, new events
are also registered, again similarly to line 3-5. In cases where the end position is a test station, once
the action has been performed, the time when the test is finished is stored. To calculate this time, the
test time is added to any remaining time duration for changing job configuration in the test station, in
case the time duration for changing configuration is longer than the time duration of the action. The
job will be marked as unavailable until a test result is received. If the end position on the other hand is
the buffer, the job will remain available and if the end position is the passed or not passed area, the job
will be removed.

Once the action has been performed, the scheduler will once again update the time stamp and receive
the new system state. The loop then continues until there are no more jobs to handle or until a deadlock
has occurred. Once at this point, the scheduler will send the results of the simulation to the main thread.

37

1 while (No jobs available && More jobs arriving)
2 {
UpdateTimeStampToNextEventTime () ;
1 CheckForBreakdowns () ;
5 ReceiveAvailableJobsNTs () ;
6 ¥

¢ while ((Jobs available || Jobs being tested) && No deadlock)
o {

10 (bestIdFp, bestStartPos,

11 bestEndPos, bestSetupTimeRobot,

12 bestProcessTimeRobot ,

13 bestRemainingsetupTimeTs) = GetNextActionHeuristicRule() ;

15 if (bestStartPos == null)

16 {

17 UpdateTimeStampToNextEventTime () ;
18 CheckForBreakdowns () ;

19 ReceiveAvailableJobsNTs () ;

20 }

1 else

2 {

23 PerformAction(bestStartPos, bestEndPos,

24 bestIdFp, bestSetupTimeRobot,
25 bestProcessTimeRobot ,

26 bestRemainingsetupTimeTs) ;

7 }

29 while (No jobs available && More jobs arriving)
30 {

31 UpdateTimeStampToNextEventTime () ;

32 CheckForBreakdowns () ;

33 ReceiveAvailableJobsNTs () ;

34 X
35 }
36 SendResult () ;

Listing 5.2: The main loop of the scheduler thread.

The algorithm for selecting the next action using the heuristic rule from equation will now be
explained. The complete algorithm can be found in appendix A and a visualization of the algorithm can
be found in [5.1] The algorithm checks the available actions for each available job. Each job can either
have failed a test or be done with its test cycle, have only one type of test station as an option for the
next action, or have several different types of test stations as the next option.

In the first case, if the job has either failed a test or is done with its test cycle, see line 15-49 in
appendix A or the upper left branch in figure the job should be moved to the passed or not passed
area. The algorithm calculates the setup time of the robot, i.e. the time to get to the job, and the
process time of the robot, i.e. the time it takes to move the robot to its end area. With the help of
these values as well as the prioritization value and release time of the job and the parameters defined in
the configuration, a scheduling prioritization value is calculated using equation If this is the highest
value found so far, the action will be saved as the best one so far.

Continuing with the second case, when the job only have one type of test station to choose from, see
line 50-124 in appendix A or the upper middle branch in figure The algorithm loops through each
of the connected test stations and checks if they are of the right type. For test stations of the correct
type, the algorithm checks if the test station is occupied by another job that is done with its test. If
this is true and no available action can be found, that is the sign of a deadlock. Therefore, the test
station in question will be stored together with the job requesting to go there so that the information
can be used if a deadlock has occurred. Otherwise, if the test station is not occupied and it has not
been reserved by another job to solve a deadlock, this is explained further down in the algorithm, the
scheduling prioritization value is calculated in the same way as in the first case, with one exception. If
the job is already located at a test station of the correct type, the job will receive the highest possible
scheduling prioritization value and the algorithm will return the action. This is because such an action
would take zero time and no other action that requires manipulation by the robot can achieve a higher
scheduling priority.

38

Finally the third case, when the test cycle of the job allows for several different types of test stations
next, see line 125-223 in appendix A or the upper right branch in figure Here, the algorithm first
checks how many of the upcoming tests in the test cycle can be performed in any order. Then the
algorithm will run in the same way as in the second case, except that it will run through that algorithm
for all different types of test stations available to chose from.

At this point, all actions have been evaluated and the best action can be returned. However, if no
action has been found and deadlock situations have been noticed during the algorithm, the deadlock has
to be solved using the buffer, see line 224- 309 in appendix A or the lower branch in figure The
algorithm will loop through all buffer positions and store the buffer positions that are currently available.
If no positions are available and there are no jobs that are currently undertaking tests, that means that
the deadlock cannot be solved. The function will then return and the scheduling has failed. If that is
not the case, however, the algorithm will loop through all deadlock situations that were stored earlier
in the algorithm. The stored information is the position of a job and the position of the test station it
seeks. For each deadlock situation, the scheduler will check if the job in the sought test station seeks
the test station that the currently checked job is located at, i.e. if two jobs want to switch position, here
called a double sided deadlock. Then the algorithm will loop over all available positions in the buffer and
calculate the scheduling priority. However, double sided deadlocks will be prioritized over non double
sided deadlocks, since solving such a deadlock would solve two deadlocks at the same time and thereby
increase the chance of being able to finish the scheduling. When the scheduling priority is calculated,
moving a job to the buffer counts as favourable for the job that seeks the test station the moved job was
located in. Therefore, the prioritization value and release time of the job seeking the test station is used
in the formula, equation instead of the values for the job that is actually being moved. To make sure
that the system does not go back into a similar deadlock after the next action, for example by letting a
job from the arrivals area be moved to the test station in question, the two jobs involved in the deadlock
that scored the highest scheduling priority will have the test station types they seek reserved until they
have been moved there.

In the simulation, this algorithm also includes collecting of statistical data. This is however excluded
from the versions presented in appendix A and figure to simplify the understanding of the algorithm.
When looking through the algorithm it was noticed that the algorithm checks for a double sided deadlock
for every available buffer position, which is less effective compare to only checking once before looping
through the buffer positions. This was fixed in the visualization in figure [5.1] but since the project had
only been handed in at this time it was not fixed in appendix A, to better reflect the implemented code.
However, to fix this, the code on line 169 should switch place with the code on line 271 in appendix A,
while keeping the initial indentation.

39

Next in the test cycle:
Several possible test
station types

prioriization value of the
job with "Passed” or "Not
passed” as end position.

ajob thatis
done testing?

Yes

Potential

A

[Store job and

done testing?

test staton

Calculate the

scheduling Calculate the
scheduling
prioritization
value
Best scheduling
prioritization Best sc
value so far? prioritization

value so far?

test station

_ Yes [
L

More jobs available?

\ 4 Yes
JYes ("More buffer positions |LNe_w_ [More deadlock
available? ions?
No

Scheduling failed

Pick a new
stored deadlock
situation

Double sided
deadlock?

Pick a new available
buffer position

Calculate the scheduling
priontization value of the job with
the buffer as end position using the
release time and prioritization value
of the job seeking this job's position.

Best scheduling

prionitization
value so far?

Store action, the upcoming
test station type of the job
and which job that is
seeking this job's position.

Reserve the test station
types that the jobs involved
in the deadlock seek

Figure 5.1: A visualization of the scheduling algorithm.

5.10 Presenting the result

When the scheduling is finished or has failed, the result is sent to the main thread. The result consist
of the following data. If the scheduling was successful or not, the total time of the production sequence,
the throughput, the total number of jobs and the number of jobs that passed, failed a test, failed a
pretest, and got stuck. Furthermore, the result contains the utilization factors of the robot and each of
the test stations. For the robot, the utilization factor is the percentage of the total time it spent moving
jobs. For the test stations, the utilization factor is the percentage of the time when the test station was
active, i.e. connected and not broken, that was spent performing tests. For each test station, the result
also includes the percentage of the time when the test station was active that was spent waiting for job
configuration changes to finish while already having a job available for testing. When it comes to the
jobs, for each type of job, the result stores the average percentage of the time from the moment when the
job reached a reachable position in the arrivals area, or equivalent for initial jobs in the buffer or in a test
station, to the moment it left the system or got stuck that was spent undertaking tests, waiting for not
being prioritized by the scheduler, waiting for the robot to arrive at the position of the job, being moved
by the robot and waiting for test station types to become available. Note that these time percentages
does not add up to one since jobs can be waiting for several different types of test stations as well as not
being prioritized by the scheduler at the same time. Furthermore, the time from when the job becomes
available, in the arrivals area or after a finished test, until the robot is ready for the next action is not
included in the statistics. The result also stores utilization data concerning the buffer. The data that is
stored shows the percentage of the total time that the buffer stored zero jobs, one job, etc., up to the
size of the buffer, excluding any jobs in broken buffer positions. This data is shown in the graphical user
interface, as seen in figure and the user has the option to save it as a[TOMI}Hile together with the
used configuration.

Select config-file Sequence completed.

TotalTime: 02:28:06:000
NbrlobsTotal: 152
Throughput: 1.02633 job/m

NbrlobsPassed: 144
Run simulation Nbr)obsFailedTest: 3

NbrJobsFailedPretest: 4
simulation completed [|HHNNREERRRREEL

|:rypton_si mulation\KryptonSim\ConfigFiles\Config2.tml|

NbrJobsStuck: 1

RebotUtilization: 0.39641

JobStatistics
Save result JobType: 1 Testing: 0.44842 WaitNotPrioritized: 0.02011 WaitRobot: 0.11774 MovedByRobeot: 0.08335
WaitTsType
1:0.08184
2:0.05952
3: 0,055

JobType: 2 Testing: 0.61719 WaitNotPrioritized: 0.22024 'WaitRobot: 0.10956 MovedByRobot: 0.06985
WaitTsType
2: 0.14577
3:0.05215
4:0.25948

TestStationStatistics

TsPos: 0 TsType: 1 Utilization: 0.05965 WaitForSetup: 0.00000
TsPosi 1 TsType:2 Utilization: 0.24646 WaitForSetup: 0.01885
TsPos: 2 TsType:3 Utilization: 0.32861 WaitForSetup: 0.01283
TsPos:3 TsType:4 Utilization: 0.27290 WaitForSetup: 0.00039
TsPos:4 TsType:1 Utilization: 0.05751 WaitForSetup: 0.00000

BufferUtilization: 0.95915 0.03579 0.00506 0 0

Figure 5.2: An example of the graphical user interface after running a production sequence.

Several simulations with different configurations were run to verify that the program had the desired
behavior. However, because of the inaccuracy in the estimated test times and movement times as well
as the arbitrary test cycles selected, no general conclusion regarding performance can be said. Instead,
the developed program is meant to be used as a tool to assess what the necessary system layout would
be for different production rates.

41

42

Chapter 6

Conclusions and discussion

This project started off by taking the vision of a future system and formulating it into a concrete system
specification, a first step in bringing the vision to reality. The system specifications were analysed to
create two concepts for the flow of information within the system. While the two concepts offer similar
capabilities, the database concept was recommended for a future implementation thanks to the high
experience and knowledge of similar systems within the project group. The solution provides a flexible
system where test stations can be connected and disconnected during production, a stable system where
both jobs that are moved in an unexpected way, for example by an operator, and subsystems that are
experiencing errors are noticed and accounted for automatically, all this in accordance with the goals
stated in chapter

The theories behind job shop scheduling were studied in chapter [4] to be able to maximize the
efficiency of the system, again in accordance with the goals stated in chapter [I] The heuristic rule that
was derived, see equation focuses, as stated in section on maximizing the throughput. However,
as also stated, heuristic rules leave no guarantees and parameters have to be tweaked until a satisfying
result is achieved. The technique based on classical optimization, A*, guarantees an optimal solution but
this algorithm requires substantially higher processing power compared to using a heuristic rule. When
designing the system one has to weigh the need for optimality against the increased hardware cost it
would entail. As also stated in chapter] beam search can be used as a compromise between these two
techniques.

Since the implemented simulation is based on the database-concept, it can be used as a proof of
concept. Furthermore, the simulations can be used to assess how many test stations that are needed to
achieve the requested production rate and how large the buffer should be to be able to avoid deadlocks
when running different test cycles. However, to do this analysis the estimated test times and robot
movement times would have to be updated to more precise approximations. It is also recommended that
the project team continues the development by including A* and beam search as alternatives along side
the heuristic rule. With all three approaches implemented, the performance and processing requirements
can be compared before a technique is chosen for a future implementation.

Once the simulations have given a clear assessment of the required number of test stations etc., the
database concept can be used as a base when completing a full design of the physical system upon its
implementation.

This has been an exciting and educational project to work on. I hope and believe that the result
will be of great help when implementing the system and that the future implementation will help Axis
increase their productivity.

43

44

Bibliography

Collimator. Encyclopaedia Britannica. June 25, 2012. URL: https://www . britannica . com/
technology/collimator (visited on 12/17/2020).

Axis Communications. About Axis. URL: https://www.axis.com/sv-se/about-axis| (visited on
08/22/2020).

Shawn Frayne. All about Prozimity Sensors: Which type to use? Seeed Studio. 2019. URL: https:
//www.seeedstudio.com/blog/2019/12/19/all-about-proximity-sensors-which-type-to-
use/| (visited on 12/11/2020).

Andy De George. Desktop Guide (Windows Forms .NET). Microsoft. Oct. 26, 2020. URL: https:
//docs.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-5.0
(visited on 03/13/2020).

Michael L. Pinedo. Planning and Scheduling in Manufacturing and Services. 2nd ed. New York,
NY, USA: Springer New York, 2009, pp. 441-445. 1SBN: 978-1-4419-0909-1.

Michael L. Pinedo. Planning and Scheduling in Manufacturing and Services. 2nd ed. New York,
NY, USA: Springer New York, 2009, pp. 423-427. 1SBN: 978-1-4419-0909-1.

Michael L. Pinedo. Planning and Scheduling in Manufacturing and Services. 2nd ed. New York,
NY, USA: Springer New York, 2009, pp. 430-432. 1SBN: 978-1-4419-0909-1.

Michael L. Pinedo. Planning and Scheduling in Manufacturing and Services. 2nd ed. New York,
NY, USA: Springer New York, 2009, pp. 449-461. 1SBN: 978-1-4419-0909-1.

Tom Preston-Werner. TOML; Tom’s Obvious Minimal Language. URL: https://toml.io/en/
(visited on 03/13/2021).

Christian Rosen and Gustaf Olsson. Industrial automation. Rev. ed. Lund, Sweden: Media-Tryck,
Lund University, 2005, pp. 512-520.

Peter Norvig Stuart Russell. Artificial intelligence: A modern approach. 3rd ed. Harlow, England:
Pearson Education Limited, 2016, pp. 98-99. 1SBN: 978-1-1292-1539-64.

Zhen Wang, Jihui Zhang, and Jianfei Si. “Dynamic Job Shop Scheduling Problem with New Job
Arrivals: A Survey”. In: Proceedings of 2019 Chinese Intelligent Automation Conference. Ed. by
Zhidong Deng. Singapore: Springer Singapore, 2020, pp. 664—668. 1SBN: 978-981-32-9050-1.

Eric W. Weisstein. NP-Problem. MathWorld -A Wolfram Web Resource. URL: https://mathworld.
wolfram.com/NP-Problem.html (visited on 11/15/2020).

Patrick Winston. MIT 6.034 Artificial Intelligence, Lecture 5: Search: Optimal, Branch and Bound,
A*. Massachusetts Institute of Technology. Cambridge, MA, USA. 2010. URL: https://ocw.
mit .edu/courses/electrical-engineering-and-computer-science/6-034-artificial-
intelligence-fall-2010/lecture-videos/ (visited on 11/17/2020).

45

https://www.britannica.com/technology/collimator
https://www.britannica.com/technology/collimator
https://www.axis.com/sv-se/about-axis
https://www.seeedstudio.com/blog/2019/12/19/all-about-proximity-sensors-which-type-to-use/
https://www.seeedstudio.com/blog/2019/12/19/all-about-proximity-sensors-which-type-to-use/
https://www.seeedstudio.com/blog/2019/12/19/all-about-proximity-sensors-which-type-to-use/
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-5.0
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-5.0
https://toml.io/en/
https://mathworld.wolfram.com/NP-Problem.html
https://mathworld.wolfram.com/NP-Problem.html
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/

46

Appendices

Appendix A: The scheduling algorithm to get the next action

1 public (int, Position, Position, double, double, double) GetNextActionHeuristicRule ()
o {
int bestJobId = O0;
4 Position bestStartPos = null;
Position bestEndPos = null;
6 double bestSetupTimeRobot = 0;

7 double bestProcessTimeRobot 0;
s

8 double bestRemainingsetupTimeTs = O;

9 double bestSchedulingPrio = 0;

10

11 List<Position[]> jobPosToOccupiedTsPos = new List<Position[]1>();

13 foreach (JobInfoScheduling jobInfo in this.AvailableJobs)

14 {

15 if (jobInfo.FailedTest ||

16 jobInfo.PerformedTests.Count == jobInfo.TestCycleTsTypes.Count ||

17 jobInfo.PerformedTests.Count == jobInfo.TestCycleTsTypes.FindIndex(type =>
18 type == 0))

20 double setupTimeRobot = Globals.GetRobotMoveTime (this.RobotPos, jobInfo.Pos);
21 Globals.Areas endArea;

22 if (!jobInfo.FailedTest)

23 {

24 endArea = Globals.Areas.Passed;

25 }

26 else

27 {

28 endArea = Globals.Areas.NotPassed;

29 }

30 double processTimeRobot = Globals.GetRobotMoveTime (jobInfo.Pos, new
31 Position(endArea, 0));

33 double schedulingPrio = jobInfo.Prio / (this.HeuristicRuleProcessTimeScaling x*
34 processTimeRobot +

35 this.HeuristicRuleSetupTimeScaling * setupTimeRobot)
36 * Math.Exp(this.HeuristicRuleReleaseDateScaling *

37 (this.TimeStamp - jobInfo.ReleaseTime)) ;

39 if (schedulingPrio > bestSchedulingPrio)

10 {

41 bestJobId = jobInfo.IdFp;

12 bestStartPos = jobInfo.Pos;

13 bestEndPos = new Position(endArea, 0);

14 bestSetupTimeRobot = setupTimeRobot;

15 bestProcessTimeRobot = processTimeRobot;

16 bestRemainingsetupTimeTs = O0;

17 bestSchedulingPrio = schedulingPrio;

18 T

19 }

50 else if (jobInfo.TestCycleOrders[jobInfo.PerformedTests.Count])

51 {

52 foreach (TestStationInfoScheduling tsInfo in this.TestStations)
53 {

54 if (tsInfo.Type == jobInfo.TestCycleTsTypes[jobInfo.PerformedTests.Count])
55 {

57 if (tsInfo.Occupied && jobInfo.Pos.Area == Globals.Areas.TestStations
58 && jobInfo.Pos.Index != tsInfo.IndexPos

59 && this.AvailableJobs.Any(x => (x.Pos.Area ==

60 Globals.Areas.TestStations && x.Pos.Index == tsInfo.IndexPos)))

62 jobPosToOccupiedTsPos.Add (new Position[] { jobInfo.Pos, new

63 Position(Globals.Areas.TestStations, tsInfo.IndexPos) });

64 }

65 else if ((!tsInfo.0Occupied || (jobInfo.Pos.Area ==

66 Globals.Areas.TestStations && jobInfo.Pos.Index == tsInfo.IndexPos))
67 &&(!this.AntiDeadlockTsTypeRecervedJobId.Any(x => x[0] == tsInfo.Type)
68 || this.AntiDeadlockTsTypeRecervedJobId.Where(x => x[0] ==

69 tsInfo.Type) .Any(x => x[1] == jobInfo.IdFp)))

71 double schedulingPrio;

72 double processTimeRobot;

7 double setupTimeRobot;

74 double remainingsetupTimeTs;

76 double setupTimeTs = Globals.GetTsSetupTime(tsInfo.JobTypeConfig,
77 jobInfo.Type) ;

79 if (jobInfo.Pos.Area == Globals.Areas.TestStations && jobInfo.Pos.Index ==
80 tsInfo.IndexPos)

81 {

82 schedulingPrio = double.MaxValue;

83 processTimeRobot = 0;

84 setupTimeRobot = 0;

85 remainingsetupTimeTs = setupTimeTs;

86 }

87 else

88 {

89 processTimeRobot = Globals.GetRobotMoveTime (jobInfo.Pos, new

90 Position(Globals.Areas.TestStations, tsInfo.IndexPos));

91 setupTimeRobot = Globals.GetRobotMoveTime (this.RobotPos, jobInfo.Pos);

93 remainingsetupTimeTs = Math.Max(setupTimeTs - (setupTimeRobot +
94 processTimeRobot), 0);

96 schedulingPrio = jobInfo.Prio / (this.HeuristicRuleProcessTimeScaling *
97 processTimeRobot +

98 this.HeuristicRuleSetupTimeScaling *

99 (setupTimeRobot + remainingsetupTimeTs))

100 * Math.Exp(this.HeuristicRuleReleaseDateScaling

101 * (this.TimeStamp - jobInfo.ReleaseTime));

104 if (schedulingPrio > bestSchedulingPrio)

105 {

106 bestJobId = jobInfo.IdFp;

107 bestStartPos = jobInfo.Pos;

108 bestEndPos = new Position(Globals.Areas.TestStations, tsInfo.IndexPos);
109 bestProcessTimeRobot = processTimeRobot;

110 bestSetupTimeRobot = setupTimeRobot;

112 bestRemainingsetupTimeTs = remainingsetupTimeTs;

113 bestSchedulingPrio = schedulingPrio;

114

115 if (bestSchedulingPrio == double.MaxValue)

116 {

117 return (bestJobId, bestStartPos, bestEndPos, bestSetupTimeRobot,
118 bestProcessTimeRobot , bestRemainingsetupTimeTs) ;

125 else
126 {

127 int i = jobInfo.PerformedTests.Count;

48

189
190
191
192
193
194
195
196
197

198

200

while ((i < jobInfo.TestCycleTsTypes.Count ||
i < jobInfo.TestCycleTsTypes.FindIndex(type => type == 0))
&% !jobInfo.TestCycleOrders[il)

{

i++;

}

List<int> testCycleTypesSublist = jobInfo.TestCycleTsTypes.GetRange (0, 1i);
i -=1;
while (i >= 0 && !jobInfo.TestCycleOrders[i])
{
foreach (TestStationInfoScheduling tsInfo in this.TestStations)
{
if (tsInfo.Type == jobInfo.TestCycleTsTypesl[il]
%% jobInfo.PerformedTests.Count(x => x.Equals(tsInfo.Type)) <
testCycleTypesSublist.Count(x => x.Equals(tsInfo.Type)))

{
if (tsInfo.Occupied && jobInfo.Pos.Area == Globals.Areas.TestStations &&
jobInfo.Pos.Index != tsInfo.IndexPos
&% this.AvailableJobs.Any(x => (x.Pos.Area == Globals.Areas.TestStations
&% x.Pos.Index == tsInfo.IndexPos)))
{
jobPosToOccupiedTsPos.Add(new Position[] { jobInfo.Pos, new
Position(Globals.Areas.TestStations, tsInfo.IndexPos) 1});
}
else if ((!tsInfo.Occupied ||
(jobInfo.Pos.Area == Globals.Areas.TestStations
&& jobInfo.Pos.Index == tsInfo.IndexPos))
&&(!this.AntiDeadlockTsTypeRecervedJobId.Any(x => x[0] ==
tsInfo.Type)
|| this.AntiDeadlockTsTypeRecervedJobId.Where(x => x[0] ==
tsInfo.Type) .Any(x => x[1] == jobInfo.IdFp)))
{

double schedulingPrio;
double processTimeRobot;
double setupTimeRobot;
double remainingsetupTimeTs;

double setupTimeTs = Globals.GetTsSetupTime (tsInfo.JobTypeConfig,
jobInfo.Type);

if (jobInfo.Pos.Area == Globals.Areas.TestStations
&& jobInfo.Pos.Index == tsInfo.IndexPos)
{
schedulingPrio = double.MaxValue;
processTimeRobot = 0;
setupTimeRobot = 0;
remainingsetupTimeTs = setupTimeTs;
}
else
{
processTimeRobot = Globals.GetRobotMoveTime (jobInfo.Pos, new

Position(Globals.Areas.TestStations, tsInfo.IndexPos));
setupTimeRobot = Globals.GetRobotMoveTime (this.RobotPos, jobInfo.Pos);

remainingsetupTimeTs = Math.Max(setupTimeTs - (setupTimeRobot +
processTimeRobot), 0);

schedulingPrio = jobInfo.Prio / (this.HeuristicRuleProcessTimeScaling
processTimeRobot

this.HeuristicRuleSetupTimeScaling

(setupTimeRobot + remainingsetupTimeTs))
Math.Exp(this.HeuristicRuleReleaseDateScaling
(this.TimeStamp - jobInfo.ReleaseTime));

* ¥ ¥ + *

50

}

if (bestSchedulingPrio

{

if (schedulingPrio > bestSchedulingPrio)

.Pos;

{
bestJobId = jobInfo.IdFp;
bestStartPos = jobInfo
bestEndPos = new Posit

bestProcessTimeRobot =

bestSetupTimeRobot =
bestSchedulingPrio =

if (bestSchedulingPrio
{
return (bestJobId,
bestProcessTimeRobot
¥
}
}

i--;

}

List<int> availableBufferPoses =

for (int i = i < this.BufferSiz

{

0;
if (!this.AvailableJobs.Where (x
.Any(x => x.Pos.Index == i)
&& !'this.BrokenBuffer[i])

{

availableBufferPoses.Add (i) ;

}
}
if (availableBufferPoses.Count

{

if (this.UnavailableJobs.Count
{
this.Success =

}

false;

}

else

{
int bestJobIdToTs = O0;
int bestTsTypeAfterBuffer = 0;
bool doubleSidedDeadlock = false
bool foundDoubleSidedDeadlock =

bestStartPos,

ion(Globals.Areas.TestStations,
processTimeRobot;

setupTimeRobot ;
bestRemainingsetupTimeTs =
schedulingPrio;

remainingsetupTimeTs;

double.MaxValue)

bestEndPos,
, bestRemainingsetupTimeTs) ;

== 0 && jobPosToOccupiedTsPos.Count > 0)

new List<int>();

e; i++)

=> x.Pos.Area

0)

0)

i

false;

foreach (Position[] jobNTsPos in jobPosToOccupiedTsPos)

{
Position jobPos =
Position tsPos =

jobNTsPos [0]
jobNTsPos [1];

JobInfoScheduling jobToTs = this.AvailableJobs.Find(x => x.Pos == jobPos);
int tsAfterBuffer = this.TestStations.Find(x => x.IndexPos == tsPos.Index).Type;

B

if (jobPosToOccupiedTsPos.Any(x => x[0].Index == tsPos.Index)

&& jobPosToOccupiedTsPos.Find(x => x[0].Index

== jobPos.Index)

{
doubleSidedDeadlock = true;
foundDoubleSidedDeadlock = t
}
else
{
doubleSidedDeadlock = false;
}

rue;

foreach (int bufferIndexPos in availableBufferPoses)

{
if (! foundDoubleSidedDeadlock
{

|| doubleSidedDeadlock)

tsInfo.IndexPos);

bestSetupTimeRobot ,

Globals.Areas.Buffer)

= tsPos.Index) [1].Index

double processTimeRobot = Globals.GetRobotMoveTime (tsPos, new
Position(Globals.Areas.Buffer, bufferIndexPos));
double setupTimeRobot = Globals.GetRobotMoveTime (this.RobotPos, tsPos);

double schedulingPrio = j
* processTimeRobot

+ this.HeuristicRuleSetupTimeScaling

* setupTimeRobot)

* Math.Exp(this.HeuristicRuleReleaseDateScaling
* (this.TimeStamp - jobToTs.ReleaseTime)) ;

if (schedulingPrio > bestSchedulingPrio)
{
bestJobId = this.AvailableJobs.Find(x =>
(x.Pos.Area == Globals.Areas.TestStations
&% x.Pos.Index == tsPos.Index)).IdFp;
bestStartPos = tsPos;
bestEndPos = new Position(Globals.Areas.Buffer, bufferIndexPos);
bestSetupTimeRobot = setupTimeRobot;
bestProcessTimeRobot = processTimeRobot;
bestRemainingsetupTimeTs = 0;
bestSchedulingPrio = schedulingPrio;

bestJobIdToTs = jobToTs.IdFp;
bestTsTypeAfterBuffer = tsAfterBuffer;
}
}
}
}
this.AntiDeadlockTsTypeRecervedJobId.Add(new int[] { this.TestStations.Find(x =>
x.IndexPos == bestStartPos.Index).Type, bestJobIdToTs });
this.AntiDeadlockTsTypeRecervedJobId.Add(new int[] { bestTsTypeAfterBuffer,
bestJobId 1});

}
}
int indexToRemove = this.AntiDeadlockTsTypeRecervedJobId
.FindIndex(x => x[1] == bestJobld);
if (indexToRemove != -1)
{
this.AntiDeadlockTsTypeRecervedJobId.RemoveAt (indexToRemove) ;
}

return (bestJobId, bestStartPos, bestEndPos, bestSetupTimeRobot,
bestProcessTimeRobot , bestRemainingsetupTimeTs) ;

obToTs.Prio / (this.HeuristicRuleProcessTimeScaling

51

	Acronyms and abbreviations
	Introduction
	System specifications
	Fundamental functionality
	Efficiency
	Flexibility
	Error handling
	Deadlocks
	Data presentation
	Statistics

	Concept generation
	General concept overview
	The database concept
	Preparation of the test units
	Arrival and buffer
	Testing
	Visualizations and statistics
	Safety
	The robot
	Exiting the system

	The ID-tag concept
	Summary of the communication channels and the essential hardware
	Comparison of the concepts

	Job shop scheduling
	Scheduling model
	Job shop scheduling theory
	Heuristic rules
	Classical optimization
	Artificial intelligence approaches

	Adapt the theory to the system

	Simulations
	General structure
	Configuration
	The assembly thread
	The pretest thread
	The arrivals thread
	The robot thread
	The buffer thread
	The test stations thread
	The scheduler thread
	Presenting the result

	Conclusions and discussion
	Bibliography
	Appendices
	Appendix A: The scheduling algorithm to get the next action

